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Abstract

The Japanese regard success in R&D in high-temperature superconductivity as
an important national objective. Japanese scientisls and non-scientists alike
share a high level of optimism and enthusiasm about the field, and feel that
important practical benefits will be realized from high-temperature super-
conductors by the start of the 21st century. One indicator of the Japanese
commitment to the field is the fact that the number of Japanese professional
researchers in superconductivity is comparable to the number in the United
States. This document provides the results of a detailed evaluation of the cur-
rent state of Japanese high-temperature superconductivity development. The
analysis was performed by a panel of technical experts drawn from U.S. indus-
try and academia, and is based on reviews of the relevant literature and visits

to Japanese government, academic and industrial laboratories. Detailed ap-
praisals are presented on the following: Basic research (including new mate-
rials structural properties, transport properties, thermodynamic properties,
optical properties, electronic structure, magnetic properties); superconduct-
ing materials (including new superconducting phases, high T¢ oxide super-
conductors, organic superconductors, heavy fermion superconductors); large-
scale aoplications (maglev trains, superconducting generators, superconduct-
ing magnetic energy storage, advances in low Tc conductors, high magnetic

field research); processing of superconducting materials (including mono-
lithic conductors .....wires, tapes, fibers, thick films); superconducting electron-
ics and thin films,, (low Tc integrated thin film processes for Josephson tech-
nology; low T c digital circuits; low T c analog devices and circuits; high T c thin

films; high Tc devices). In all cases, comparisons are made with the corre-
sponding state-of-the-art in the United States.
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JAPANESE TECHNOLOGY EVALUATION CENTER

SPONSOR The Japanese Technology Evaluation Center (.]TEC) is operated for the Federal Government by
Loyola College to provide assessments of Japanese research and development (R&D) in selected
technologies. The National Science Foundation (NSF) is the le_.d support agency. Other sponsors
include the Defense Advanced Research Project Agency (DARPA), the National Aeronautics and
Space Administration (NASA) and the Department of Energy (DOE).

PURPOSE The JTEC assessments contribute to more balanced technology transfer between Japan and the U.S.
The Japanese excel at acquisition and perfection of foreign technologies, but the U.S. has relatively
little experience with this process. As the Japanese become leaders in research in targeted
technologies, it is essential that the U.S. have access to the results. JTEC provides the essential first
step in this process by alerting U.S. researchers to Japanese accomplishments. The JTEC [mdings
can also be helpful iu formulating Governmental research and trade policies.

APPROACH The assessments are performed by panels of about six U.S technical experts in each area. Panel
members are leading authorities in the field, technically active, and knowledgeable of Japanese and
U.S. research programs. Each panelist spends about one month of effort reviewing literature, making
assessments, and writing reports on a part-time basis over a six-month period Most panels conduct
extensive tours of Japanese laboratories. To balance perspectives, panelists are selected from
industry, academia, and government.

ASSESSMENTS The focus of the assessments is on the status and long-term direction of Japanese R&D efforts relative
to those in the U.S. Other important aspects include the evolution of the technology, key Japanese
researchers and R&D organizations, and funding sources. The time frame of the R&D forecasts is up
to ten years, corresponding to future industrial applications in 5 to 20 years.

LITERATURE Loyola College provides Japanese literature and transla'ion services to the panelists. Special efforts
are made to provide panelists with timely source malerial, such as informal proceedings from
seminars and conferences in the Japanese research community, results from recent technical
committee meetings on Japanese national R&D projects, and from contacts at R&D centers in
Japanese high technology industries.

REPORTS The panel [mdings are presented to small workshops where invited participants critique the
prelinlinary results. The panel f'mal reports are distributed by the National Technical Information
Service (NTIS), 5285 Port Royal Road, Springfield, Vkginia 22161. The panelists also present the
technical findings in papers and books. All results are unclassified and public.

STAFF The Loyola College JTEC staff members help select topics to be assessed recruit experts as
panelists, organize and coordinate panel activities, provide literature support, organize tours of
Japanese labs, assist in the preparation of workshop presentations and reports, and provide general
administrative support.

Dr. Duane Shelton Dr. George Gamota
Principal Investigator Senior Advisor
Loyola College Mitre Corporation
Baltimore, MD 21210 New Bedford, MA 01730
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Preface

This is the latest in a series of Japanese technology assessments that we have

been conducting under the JTEC program since 1984. In 1983 George Gamota
convinced me and Bill Finan, my counterpart at the Department of Commerce,

that the Nation must do more to monitor Japanese research. The methodology

chosen was to use an expert panel to take a snapshot of tile status of Japanese

research in a critical technology by an intensive study-and to communicate

the i:nplications of the Japanese efforts to policy makers in Government and

industry. To provide the logistics support we contracted with the Science Ap-

plications International Corporation (SAIC).
I will review the studies that are available, but will not attempt to summa-

rize each of their findings in a sentence or two--the flfll reports are available
from NTIS. I will make a few overall comments on our findings at the end.

Our first effort was a series of four panels in 1984 and 1985. We asked David

Brandin, then at SRI, International to chair a panel which would take a look at

the broad rmlgc of computer science. Dale Oxender at Michigan chaired a panel
on biotechnology. Jim Nevin at tile Draper Laboratory led a group that looked

at mechatr(,nics, which the Japanese define as the union of electrical and me-

chanical enl_ineering --things like robotics and flexible manufacturing systems.

Finally we and a group, jointly chaired by Bill Spencer of Stanford and Harry
Welder of UCSD, research Japanese progress on non-silicon microelectronics,

such as ga]liuni arsenide devices and optical electronics devices.
In 198(! tile National Science Foundation took over the role a.s lead agency,

and with _dditional flmding from DARPA, we organized six panels during the

next three years. Our telecommunications panel was chaired by George Turin,

then Dear_ of Engineering at UCLA. The group on advanced materials (primar-

ily polym,_,rs) was chaired by Jim Economy of IBM. Undel Marvin Denicoff of

Thinking Machines Inc., our second computer panel took a focused look a.t par-

allel architectures, particularly the Fifth Generation Project. This group was

the first t.) include a tour of Japanese laboratories as a. formal part of its proce-

i: dures, which proved to be so illuininating that all sul)s('qu('nt i>anels hay<' taken
a similar Crip there. In 1988 George Ga.mota and Wendy Frieman compiled the
results of' the first six panels with some cross-cutting observations into the

" book Gamint_ Ground: Japan's Strides in Science and Technology, published
! by Ballin_._er.

The Japanese ERATO basic research initiative consists of more than a

i dozen projects intended to foster creativity and cooI)cration ill more ha.sic re-search, particularly in electronic niatcrials and biotechnology. W_ aplminted

joint chair,nen, Bill Brinkman of Bell Laboratories and Dale Oxender of Michi-

gan to cover these a,'eas.
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Computer aided design and computer integrated manufacture of semiconduc-
tors in Japan was studied by a panel under Bill Holton of the Semiconductor

Research Corporation. Finally research in advanced sensors was assessed by a

panel under Laurie Miller of Bell Laboratories.

By 1989 the project had proven to be successflll enough to warrant es-
tablishment of a Japanese Technology Evaluation Center at Loyola College

under a grant from NSF with additional funding from DARPA, NASA and
the Department of Energy. The current phase includes the six panels. High

definition television systems have been assessed by a group under Dick Elkus.

The present report on superconductivity applications w_s compiled by a group
under Mildred Dresselhaus of MIT. We have a group looking at space and

trans-atmospheric propulsion under Charles Merkle at Penn State. Our third

computer panel is supporting the implementation of the science and technology

treaty signed by President Reagan and Prime Minister Takeshita in Toronto

in 1988 by identifying opportunities for joint research in advanced scientific

computing. It is chaired by Mike Harrison of Berkeley. Nuclear power gen-

eration in Japan is being researched by a panel under Kent Hansen at MIT,
and high temperature composite materials are being studied by a group under
Judd Diefendorf at Rensselaer.

We have seen Japanese research make great progress over the course of tile

JTEC studies. In 1984 the conventional wisdom was that the Japanese ex-

celled at acquiring foreign technologies, performing competent applied research

to perfect them, and developing manufacturing techniques to make products

from them of the highest quality. Our early panels frequently confirmed that
model, but began to report centers of excellence in more basic research as well,

particularly in areas targeted by the Japanese for long term commitments.

Now we are seeing more technologies where the Japanese are using the revenue
stream from their favorable balance of trade to strengthen their basic and ap-

plied research capabilities. As these investments produce innovations, we in
the United States must learn how to better transfer Japanese technologies to

the U.S. JTEC can Be a useful first step in that process, by id_,ntifying areas

where the Japanese have the world's best technologies.

Fr ,'mk ttuband
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Executive Summary
k

)
To study and assess tile stat(" of the'-art of .Japan(,se R&D in sup('rc_)1_,hw-

tivitv, wc first pr_par¢'d a pr_qiminar.v ass,'ssin¢'nt of the state of the art in

tL.,, U.S. to ft)rm a b_st, lim. for our visit t,) h'ading ct'ntcrs for ,upt,rc,_,t:w

rivity 1,,search in .Japan. The visit._ included 3 mfiw'rsitv, 11 industrial an,t 7

_wcrnment laboratories ow.r a 10 day lwriod. During this time we ha,t aJl op-

l)()rtunity to interact in depth with tlw Jat)ancse l('a(l(.rs in sup,.rc()::du('Tivity

R&:D. as w,'ll as many y,)ung,'r, activ(, r_.._earchers. On this basis we hay(. 1)r,'-

t)arcd (h'taih'd appraisals (_f their Lasic sut)(,rconductivity progrmn, ma_,,rials

r,,s(,arch, large scah, al@i,:ation._, mat('rials processing au,) ('h'ctr()ni('s ;,.i)l,lica -

t i(ms. incl_:(lin_; thin f_hn R&D. From th(.s,, (h,taih.d appraisals we draw s,w_'ral

,'_,z_clu:i,,ns. which ;ir_, l)rcs_.nt_,(l b(.l()w.

,l'i_l)an has a (1_'('1). l()_-t_,rm (',)mmitm(,nt to superc()ndnctivity R£:I) in

i_,lu._try, acad,,mia and national lal)()ratori(.._.

This commitment is s_'(,n in s_.v_,ra] ways such as the many l)¢'_)pl(, im,,b.(.(t

in sut)_'rcon(hwtivity It&D. COml)arat)h" in numl)('rs to thos(, in the U.S.. _h,m_;h

ttl,,ir !,,,imlati()n is l¢'ssthan half. Several 5-10 v_'ar SUl)(,rconductivity l)r_,.i(,cts

:m' in l)iac( ". sponsored by th(' f()m" ag('_,cies supl)ortin _ snperc,)n(hwtivitv r('-

s(,,rch: MITI (Ministry ()f hm,rnational Trade and Industry). STA ($('i_,_('_"

m.l T_,,'hn()l()g.v Administration). Monbusho (Ministry of E(hu'ati()n) m.l .TR

(,]_q)m_,'se Railway). Th('se I)r,)je('ls include th(" Monl)u._ho S1)('cial Pr()j(,ct ()n

tli_h "[('ml)('ratur_' Oxid(' Sup('rcondu('to:'s, th(" MITI Int('rnational Sul),'r,'_)n-

,l_ctivity T_'('hn()l(_gy Center (ISTEC)consortium, the' MITI .h)._,l)hs_)n S('i-

_,wific Computing Syst('m pr()j('ct, the .JR Magm'tic Lcvitatmn l)r()_ran,, the,

.XlI'FI S_l)('rcon(luctin_, G_'n('rator proj_,ct, the STA Mu!ti-Cor(" Pr(@ci i_ Su-

p('r('[m,l_wtivity, and the' STA ERATO (Explorat,)ry R,'s['arch 5)r Adv:,l,'_,d

l',','t_n(,1,)_5") Q,antmn Fl_x Param,t_¢)n l)r()j¢'('t.

Ih,cm_s(, ()f its i),,r,'_,iv¢'(l scientific and t(,clm(,l()gica] iml)m_an,'_., .'-_l.'r-

,',,ad_c_ivity has 1),,_,_,s,,h,,'t_,,l as a fla_._hil) t,) sh(,w th,, w,)rld _1,_ It,.

! .],I,am'.',(' can h,., ,r_l .',_r,'.,._lc,',.s,_f_flin f_m(lam('Htal sci(.ntific r,'.'.(';,r,],

L
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While the Japanese in recent years have been extremely successful in ad-

vanced technology and connnercialization, they have been criticized by foreign-
ers for their lesser overa,, contributions to basic research. To answer this chal-

lenge, the Japanese are taking bold steps to enhance their basic research effort

in superconductivity through increased support to leading acadenfic groups,

the estahlishment of ISTEC, the strengthening of their infrastructure for ba-

sic research and th,_ promotion of personnel exchanges with foreign countries.

Whereas the Japanese and U.S. are presently comparable in basic experimental

studies and materials re,arch, the Japanese are improving rapidly and com-
peting with us strongly. At the present time, our estimates suggest that the

mmfl#,r of Japanese researchers working on the basic science of superconduc-

'ivity is comparable to that in the U.S.

• The Japanese identify superior materials as the key to success in high-

T,. superconductivity research and technology, and are translating this

philosoiflly into a sustained, systematic approach to materials synthesis

and processing, including new materials research.

The Japanese have consistently given greater emphasis to materials re-

st,arch, and have been more successfifl in maintaining a sustained, systeln-

atic ai)proach to synthesis and proce,_sing. They also have a larger effort in

lot)king for new SUl)erconducting materials. Most of their outstanding achieve-

ments are related to this systematic approach, which is reinforced by' their

"top-down" m_magement structure and their appreciation of the people who

do materials ,;ynthesis, processing and sca.le-up. The Japanese lead us in their

ability to mount sustained, systematic materials R&D I)rograms, and have a
l)etter trained work-force to implement such programs. While the "top-d,)wn"

management systeln reinforces sustained, systeinatic research, it may be less

c(mducive to creativity. The Japanese presently are putting more effort into i
new sul)erc(mducting materials, (.specially organic superconductors, which are

c()nsi(l(,red t() he an mteg, ral l)art of the .lapanese SUl)erc(mducting materials

[li()grftlll. ;ti1(1;U'I' being studied in many ,laI)am's(' laboratories.

• In basic science, th(' interaction I)(,tween grout)s in different .]al);mese

()r_anizati(,ns in industry, university and national lal)oratories is not as

stl'()llg /IS ill the U.S.

Whih' temnw()rk within "m ,)rv,anizati<)n tends to I)e stronger than in the

U.S.. th,, int,,ra,'ti,m I)etween researchers in different J_q)am,se organiz;,ti, ms

tvxMs t() tw weaker, especially in ha._i," resear,'h. Thr,,ugh gox'ermm,nt l,'ad-

,,rshil), the .ial);m,.,,.,, are taking, steps t,) break down these I,arri,,rs t_y flllM
izJ_, lar_,' inter university pro._r;mls, estaldishin_ R&D c,msortia such ;,s IS-

X
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TEC, and encouraging strong project-related inter-organizational collabora-
tions which however tend to be in applied areas. Examples of inter-organizational

efforts in applied areas are the Josephson Scientific Computing System project
and the Multi-Core Project in Superconductivity, the latter aimed at developing

high-T¢ superconductors to the point of commercialization. Such governmental

leadership has demonstrated a number of successful achievements in technol-

ogy transfer from government laboratories working in close colIaboration with

industry in the area of both large scale superconducting magnet projects and

low-T_ Josephson junction electronics.

• The facilities and infrastructure at Japanese universities for supercon-

ductivity research is steadily improving, so that now the best Japanese

universities are equipped nearly as well as their American counterparts.

The equipment and facilities for superconductivity R&D in Japanese in-

dustry and in their national laboratories are equal or superior to that in the

U.S., and are steadily improving relative to the U.S. Although the facilities
and infrastructure for superconductivity research in Japanese universities have

lagged that in the U.S., the best Japanese universities are now rapidly improv-

ing and may soon be on a par with ours. The excellent research opportunities

in Japan are startiv.g to attract foreign talent, despite the large social and

language barriers.

• The Japanese have developed a strong industrial base for the large scale

application of low-T_ superconductivity, through government leadership,

and collaborative work at national laboratories, electrical industries and

the wire and cable companies.

While consortia are being mounted in the U.S. to enhance technology trans-

fer, the Japanese have already demonstrated successful examples of technology

transfer for more than a decade in large scale superconductivity applications.

Through government leadership, research and development personnel at the

national laboratories (NRIM and ETL), have worked collaboratively through

the R&D cycle with electrical industries (Hitachi, Mitsubishi and Toshiba) mad

with wire and cable companies. These collaborations have produced an impr(,s-

sive array of large magnet systems for magnetic filsion, high energy physics.

magnetic levitation, power generation, and magnetic resonance imaging (MRI)
applications. Japanese capabilities in superconducting wire for the next gener-

ation of magnets (above 15 tesla) significantly exceed capabilities in the U.S.

and the gap is widening.

• Low T,. Josephson digital capabilities at fimr Japanese laboratoxics far

exceed th,)se at any laboratory in the U.S., while analog SUlWrconducting

electronics capabilities in the U.S. si_;nificantly h'ad those in ,lal)an.

xi
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One overwhelming success of tile MITI superconducting electronics project

is the low-T_ digital chip technology development, providing a model of sig-

nificant technology development and transfer through a national laboratory-

industrial collaboration. Japan now dominates all digital Josephson technology,

and Japanese companies are well positioned for possible future commercializa-
tion.

Because of greater U.S. analog superconducting device expertise, U.S. efforts

in these devices are well advanced over tile Japanese level. Since early high-T_

electronics applications will likely be in analog devices, the U.S. is at present

well positioned to lead in these areas. U.S. leadership is threatened, however, if

superior low-T_ technology remains the norm in Japan and if the analog Xevice

e::pertise in Japan grows in conjunction with their expanded superconducting

thin--film and electronics developmex_ts. The Japanese are maintaining strong

low-T_ electronics programs as a crit;cal component of their superconducting

technology development effort.

Japan and the U.S. are both strong in superconductivity R&D. There are

thus many opportunities to work together and learn from each other. Because

of the greater emphasis of the Japanese on sustained, systematic materials

research, they are offering us strong competition in research and are developing

the potential to pull ahead on commercial applications.

xii



Chapter 1

Overview

M.S. Dresselhaus

1.1 Conduct of the Study

The JTEC study was formally initiated at a meeting on March 31, 1989 in

Washington at the National Science Foundation. At this meeting the scope

of this JTEC study on "High Temperature Superconductivity in Japan" was

established and the strategy for carrying out the study was delineated. Each

of the JTEC Panel attendees (M.S. Dresselhaus, R.C. Dynes, P.M. Horn, J.K.

ttul:m M.B. Maple and R.W. Ralston) was given a topical assignment, and

these topics basically correspond to the chapters of this report. At this meeting,

t.hc need for an expert in the processing of superconducting materials and for a

rcpresentat ire from a national laboratory was identified, leading to the addition

of Dr. tiod I(. Quinn to this JTEC team. (See Exhibit A.1 of Appendix A for

!fiographical sketches of the JTEC Panel members.) In preparation for our trip

to Japan, draft papers were written by members of the JTEC Panel on each of

the topical areas of tl,,e report, highlighting the state of-the art in t2&D in the

U.S. Thvsc draft reports also made contact with the international scene (other

than Japan), especially in cases where truly exceptional work was being done

elsewhere. These state of th,'-art papers thus formed a frame of refer(m(:,' fl_r

the l>rcm,nt JTEC study.

Through prior personal knmvh'dge (,f th(' JTEC Panel members about super-

conductivity I'_.&D, through their st:My of previous reports on Japanese II&D

kindly s_tI)plu'd by otlr st._lt_associates, and through the experience gained fl'om

pr,'pg*ri:lg the state of the art summaries mentioned above, a. list of .Iapanesc

laboratories with significant R&D in high-T,, suI)erconduetivi','.y was (,onstruc'ted

(see TaMe 1.1). Dr. Alan En,e;el, of InterI,ational Science and Techn(_logy As-

sociates, then l'rocee&'d t_, make contacts with the above-listed laboratories,

1
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Table 1.1: Institutions visited for the JTEC supercon'1":tivity study

Universities Institute for Materials Research (Tohoku U.)

Institute for Solid State Physics (U. of Tokyo)

University of Tokyo

Industries Fujitsu
Furukawa

Hitachi (Ibaraki)

Hit achi (Kokubunji)
Matsushita

Mitsubishi

NEC

NTT (Ibaraki)
NTT (Musashino)
Sumitomo

Toshiba

Government Labs Electrotcchnical Laboratory

ISTEC (Nagoya)

ISTEC (Tokyo)
KEK

Miyazaki Maglev Test Site
NIRIM

NRIM

Railway Technical Research Institute
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and thus ably arranged our schedule in Japan. Arriving in Japan prior to
the JTEC panel, Dr. Engel proceeded to fine-tune our itinerary to arrive at

the schedule for the period May 30 to June 10 shown in Exhibit A.2 of Ap-

pendix A. The visits included 3 university, 11 industrial, and 7 government
laboratories over a 10 day period. During this time we had an opportunity to

interact in depth with the Japanese leaders in superconductivity R&D, as well

as many younger, active researchers. On this basis we have prepared detailed

appraisals of their basic superconductivity program, materials research, large
scale applications, materials processing and electronics applications, including
thin film R&D. Because of Dr. Paul Horn's scheduling conflict, some of his

laboratory visits in Japan were made by his colleague Dr. William Gallagher

of IBM, Yorktown Heights, who in practice became a fllll-fledged contributing
member of the team.

After returning to the United States, a draft report was prepared, which

formed the basis for the oral report given in the Board Room of the National

Science Foundation in Washington on August 1, 1989. Agendas for the meetings

on March 31 and August 1 are shown in Exhibits A.4 and A.5 of Appendix A,

respectively. Input fl'om the discussants (who formed the JTEC Review Panel,
and are listed in Exhibit A.3 of Appendix A) and from other participants at

the oral presentation was invaluable in revising the draft report to its present
form.

1.2 General Observations

It is the belief of the JTEC Panel that the Japanese regard success inR&D on

superconducting materials as an important national objective. Many Japanese

feel sensitive to foreign accusations that Japan has not contributed as strongly
as the U.S. or western Europe to basic research across broad areas of science.

The Japanese have thus selected high-T¢ superconductivity as a topic to demon-

strate to the world their capability in wor!d class basic research. Although the

euphoria of 1987 regarding high-T_ superconductivity has subsided somewhat,

Japanese scientists and non-scientists alike share a high level of optinfism and
enthusiasm about the field, and feel that important practical benefits will be

realized from high-T_ superconductors by the start of the twenty-first century.
One indicator of the Japanese comnfitment to superconductivity is the re-

source allocation to the field and the speed with which they set their national

progrmn in place. Alth,,ugh the population of Japan is h:ss than half that
of the United States, it _s thought that the number of Japanese professional

researchers in superco:.,hwtivity is comparable to the number in the United

States. (It is howev likely that the number of graduate students enrolled in

3
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Ph.D. study of superconductivity in Japan is significantly lower than in tim

U.S., perhaps by a factor of 2, see §2.2). Whereas the greatest concentration of
researchers in Japan is in private industry, the United States has a relatively

larger concentration of researchers in their national laboratories.

Our JTEC Panel was much impressed by the important role that the Japanese:

government played in setting the overall policy and priorities for the Japanese

R&D progrmn, and in guiding and monitoring the implementation of the R&D

program, subsequently. Superconductivity R&D policy tlas often been im-

plemented through long term 5 to 10 year national projects, many involving

industry in a major way, and supported by both industrial and governmen-

tal funding. To encourage industry to follow government policy, appropriate
incentives and resources are provided and long term commitments are made.

Funding for the Japanese superconductivity program stems from four sources:

the Ministry of Education (MoE or Monbusho), the Science and Technology Ad-

ministration (STA), the Ministry of International Trade and Industry (MITI),

and the Japanese Railways (JR). Though strong competition exists between

these agencies, significant cooperation, organization, and long range planning

exist for the programs within each of the agencies. For examt)le, coordina-

tion, cooperation, collaborations and healthy competition amang university

researchers have been fostered by the creation of the MoE Special Project for

Research on High Temperature Oxide Superconductors [1], now headed by

Professor Yoshio Mute of Tohoku University, with participants fi'om the Uni-

versity of Tokyo, the Institute of Solid State Physics (University of Tokyo), the

Institute for Molecular Science (Okazaki), the Institute for Materials Research

(Tohoku University) and several smaller efforts at other Universities (%_kai.

Osaka, and Hiroshima) (see Table 1.2 for the meinbership of this pr_gram in

1987). Within each ,,)f the academic institutions, cooperation and collaboration

between the experimental groups is w_ry strong. Furthermore, the coupling t)e-

tween the experimental and theoretical researchers has been strengthened as
the quality of the experimental progrmns has improw,'d. The rapid buildup of

the high-T_ superconductivity program in Japan started early in 1987, soo_l

after the validation of the Bednorz Mfiller result by the University of Tokyo

group [2]. It is fair to say that both in Japan and in the U.S. the research

community responded voW enthusiastically to the challeng,' of the new high T

superconductivity phenomena.

1.3 Basic Research

In basic research, the greatest strength of the present Japanese effm't is in

academia, with some strong pockets of streng;th in ttwir nati,mal lal)_wntories

4
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Table 1.2: Members of tile Ministry of Education (Monbusho) Special Project

on Research on High Temperature Oxide Superconductors (1987).

Member Institution

Sadao Nakajimat Department of Physics, Tokai University

Shoji Tanaka Department of Applied Physics, University of Tokyo
Kazuo Fueki Department of Industrial Chemistry, University of Tot:it]o

Hiroo Inokuchi b_stitutc for" Molecular Science

Yasuo Endoh Department of Physics, Tohoku University

Hidetoshi Fukuyama. hz,.,titute for Solid State Physics, University of Tokyo

Yoshio Mutol: bu_titute for Materials Research, Tohoku University

Koichi Kitazawa DepartmcTlt of Industrial Chemistry, University of To_:yo

Humihiko Takei Institute for Solid State Physics, University of Tokyo

Masayasu Ishikawa Institute for Solid State Physics, University of Tolcyo

Seiichi Kagoshinm Department of Pure and Applied Sciences, University of Tol:yo
Shinotm Hikami Department of Pure and Applied Sciences, Univer,sity of To.(:yo

Kunisuke Asayama Faculty of Engineerin9 Science, Osaka University

Toshizo Fujita Department of Physics, Hiroshima Univer_sity
Masatoshi Sato b_,_titute for Molecular Science

t Chairman (1987)

:_Present Chairman
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and industry. Overall, it was the opinion of the JTEC Panel that the Japanese

basic experimental research program is at a par with that in the U.S., but that

their theoretical program is less vigorous. Some of the highligbts of their basic

research program (see Chapters 2 and 3) include the verification and significant

amplification of the initial discovery of Bednorz and Miiller [3] of superconduc-

tivity with T_ _ 30K in La2_xBaxCuO4-y (see §3.5.1), detailed studies of the

anisotropy of the transport properties of the oxide superconductors [4,5,6] (see

§2.6.2), the first critical field studies of Hc2(T) down to T --_ 0 [7] made possi-
ble by the availability of megagauss fields (see §2.6.2), and detailed studies of

electron-doped high-T_ superconductors [8] stemming from their initiM discov-

ery of these materials (see §3.5.5). It is interesting to observe that ninny of the

Japanese pioneering achievements in basic research resulted from their notable
achievements in materials research. Becmlse of the Japanese strong emphasis

on materials synthesis, it is likely that their contributions relative to the U.S.
in basic research will increase in the near future.

In comparison with the U.S., Japanese universities are more weakly cou-

pled to industry and to their national laboratories in basic research collabora-

tions. Furthermore, the more general coupling between industrial, university

and government laboratory basic research groups is significantly weaker than

in the U.S. The Japanese are quite aware of these differences and are taking

active steps to increase the coupling between these sectors and to strengthen

their infrastructure in basic research generally. The MoE Special Project for

Research on High Temperature Oxide Superconductors described above, and

the ISTEC Program and ERATO Programs, described below, are all efforts

that will enhance such coupling.

With regard to the quality of persom_el inv(Jlved in superconductivity R&D,

the fraction of researchers with Ph.D. degrees is significantly below that in the

U.S., especially in industrial 12&D. This puts Japanese researchers at sore(,

disadvantage with regard to moving into new fields rapidly at a high l_w.q

of creativity. Japanese industry t)rovides excellent incentives for continuing

education, as is also done by many U.S. companies.

Japanese companies also provide opportunities to earn Ph.D. degree'., by
carrying out basic research studies at the company through the so-_called "pa-

per doctor" progrmn, which has many attractive features because the Japanes,,

industrial laboratori_'s are so much better equipped than are the uniw'rsity

campuses. On the or.her hand, the JTEC Panel found this _qq,r¢:ach to lead

to less broadly trained r_'searchers than those graduathtg [r_ml n:aj_r U.S. r_'

search uniw'rsiti_'s. Th(, JTEC Panel was w'ry favorably impres:,_'d by tlw
willingness of .Iapalx'se industry to hire, talented individuals, without r_'fi,rmw_,

to tlw extent of th,'ir prior _,xp_,ri_,,ce in the'Jr first R&D assignm_'nt. [nt_,r-

('stir@y, the. top r_'s_'arch(,rs in the various laboratori(.s visited by the .VI'EC



team were already known to us and many had spent significant time in the
U.S. early in their careers. We were frequently told that the Japanese believe

that a broad exposure in a leading foreign research institution is an i:aportant

step in the professional development of their top R&D per'. mnel. In recent

years, the leading research laboratories in Japan have started to promote per-

sonnel exchanges with foreign countries, especially the U.S. The numb('r of

such exchanges, however, is still quite small.
Just as the percentage of foreign graduate students in science and engi-

neering is increasing in the U.S., our JTEC Panel heard of similar problems
in Japanese universities, except that after the Ph.D. degrees were completed,

their foreign students t_pically returned _o their county of origin, unlike tile

case in the U.S. Many of the personnel in Japanese industrial R&D are at

the B.S. or M.S. level of formal training, and are very willing to do sustained,

systematic work, often involving highly directed teams. Such organized effort

is valuable for certain types of superconductivity materials research, and tt_e

Japanese seem to excel in these areas. Tke Japa-ese superconducti'_!_.y in(lus-

try also benefits from a relatively well educated and well--motivated support

staff, working in jobs not requiring advanced degrees.

Another factor relevant to comparing the research capabilitie, of the two

countries lies in the availability of state-of-die-art res,_ar'_ c.t.,equipment, sophis-

ticated materials characterization equipment and special materials research fa-

cilities. Whereas the U.S. was once very well positioned in these area_, the

equipment and facilities capabilities for superconductivity research in Japanese
1]'universities are rapidly improving and in _orne cases are care,rag up to their

U.S. counterparts. The equipment and facilities available in Japanese national

and industrial laboratories engaged in superconductivity research have t)_'en

rapidly improving and were judged by the JTEC Panel to be comparable to

their counterparts in the best U.S. laboratories. The e×cellent research oppor-

tunities in Japan are starting to attract foreign talent, despite the large social

and language barriers. The shutdown of the neutron scattering facilities at

Brookhaven and Oek Ridge and the absence of a world class megagauss n!ag-

netlc field facility in _he United States are preventing U.S. researchers fi'om !
competing effectively in important areas of superconductivity research.

,.4 Materials Research

The JTEC team was especially impressed by the materials research achieve-

ments of the Japanese laboratories. The Japanese believe that ttw key t()

research and eventual commercialization lies in the progress of their materials

R&D, and are translating this philosophy into a sustained, systematic approach

7
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Table 1.3: Characteristics of Japanese companies active in sut)erconductivity

research ( 1988 I.

I Income tt&D Growth CapitM

Compa_ny Net Income (Nsalesl R&D (%sale_) (_,/year) Expenditu,,'_

Fujitsu $13.7_ $256 M 1.87%- $1.47 B !0.76_ 8.53% I $2.76 B
Furukawa $4.0 B $52 M 1.3% $0.092 B 2.3% 7.89% ] $0.61 B

Hitachi $24.5 B $700 M 2.9% $2.20 B 9.0% 4.0% $6.76 B

Matsushita $38.6 B $1302 M 3.37% $2.17 I_l 5.62% 5.07% $1.4 B

Mitsubishi
$18.9 B $178 M 0.94% $0.82 B 4.3% 5.9% $1.75 B

Electric

NEC $21.9 B $204 M 0.93% $3.46 B 16% 7.0% $2.0 B

NTT $45.3 B $19.14 M ,I.29% $1.45 B :1.21% 5.18% $5.,12 }{

Samitomo
$4.40 l"l $100 M 2.27% $0.18 B 4.05% 4.8,1e_ $1.91 B

Electric

Toshiba $28.6-_ , $486 M I 1.7% $1.74 8 6.1(_ v'7% I $1.70 H

to materials synthesis and processing. Although few of the industrial hlb(,ra-

tories we visited (Table 1.1) had worht class basic physics research programs,

almost all had sophisticat,,d prograiIlS in mat trials research, ihcluding research

on new materials, with special elnphasi,_. ',n achieving high critical current den-

sities J_ in the high--To oxides. Materials rrs,'arch was especially strong in th('

industrial laboratories, nlany doing similar work and leading to a national (hl-
plication of effort. We fi)und essentially n() c_)llaboration but rath(!r int(uls(,

competition between workers in one industrial laboratory with those ii_ otlwr

industrial laboratories. This intense competition was in sharp contrast with

the strong teamwork existing within a given institution.
All told, we visited 11 industrial research laI)oratori('s associated with 9

different c()ml)an!es. Th('se hlh()rat()ries wer(. s_,h'('ted 5)1" their snl)('ri()r m'-

complishnw,lt:_ in (',)llV('llti(mal ()I"high T- SUl),'r('()IMu('tivity (s(e Tal)h' 1.1 ).
To look for I)ossibh ' corr('iati.ils b_'twe('n a('hi_.venl(-nts in suI)('r(':mdilctivity
R,kD ml(t coi1mwrcializat i()n, we c()nstruct(,d Tal)l,, 1.3. Characteristic ()f th(,s,,

,lal)alwse ('()11q)a1_'(,swh() al'(" succ(,sSflll in su!),'r('(nlduclivity r('s_'al"('h is a si N-

nificant inv(,stnWllt ill R&D (wH_;ht(,d a:'¢'1'ag,[',)f 6.8'fi _)fsales) and ;, high 1'at(,

()f capital (,xpenditm'(,% (wQght(,d average ()f 12.2_Z ()f ,_ales).

Some of the me)st n()t('w()rthy Jal)alWS_"a('hi(,v(.in_,lltS in nlat(,rials r_,s¢,a1ch

are highlighted in Ch;q,t('r 3 in this I_'i)()I1. Xhuni)_,is ()f the JTEC t,,aln w_,:'_,
captivated by the extra,)rdilx.lry m'hi,'vements ()f th,' Jal);mese ill 111,"SVlltll_'Sis

of single crystals of all the illqX)l"tallt cla._s(,s ()f _)xid_' superc, mdu,'t,,rs, witl_

regard to th(' ._iz_'of the crystals, th,'ir quality, aim the lmInher ()f h11, ,i"at(,1"i,,_,
that had ind_'peIM_'htly 1)r,'l:ar_'d ]alg¢' ._illg]e crystals. $1Ul,ri,,_h_ly, s_)1_w()f t],,

best singl,' crystals were Kmw1*a* Sulalb'r imiv,.rsiti,,s such as Aos'allm (;ak_li1_

and Yanmnashi l'niv,l._ities [9,li1]. With l'¢,_ard t,)th,' disc,)v,,ry ,,f ilnl,,,1tal_
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new oxide suprrconductors, the Japanese we,.'e contributing in a significant way.

with the first observation (at NRIM) of superconductivity with T_ ,-, 1!0!,2 in

the Bi-Sr-Ca-Cu-O system[ll I and the first observation (at the U. of Tokyo)
of an electron-doped high--:/[, superconductor [8]. The JTEC temn was w'ry

much impressed by the sustained, highly systematic studies at mm W industrial

and national laboratories of the phase diagrams of synthesis parameter space

for ma_W of the oxide superconductors. These painstaking efforts were paying

off in the synthesis of superior materials and the isolation of selected high-

T_ phases. The more hierarchical "top-down" management, the longer term
horizons and the different reward structures of Japanese industry, all provide a

supportive environment for systematic materials R&D, although perhaps a less

supportive environment for truly innowttive research. Another area where the

Japanese laboratories were in a leadership position relative to the United St ah,s

was in the synthesis of materials with nmltiple sequential CuO2 layers; several

Japanese laboratories had prepared materials with 6 such CuO_ layers and one
lab(,ratory showed us results fin" 7 layers. Increasing thr number of CuO2 layers

per unit cell was onc(_ thought to be a method for increasing T_, though detailed
._tudies later showed that the mmximum T_'s were obtained with three to flmr

Cu().: iay('rs p_'r unit c_'ll [12]. A tabulation of the major achievements in

Sulmrconducting mat_,rials research by the JTEC Panel indicated approximate,
equality 1)etw('el) tl:e U.S. and Jalmn. with the .Japanese leading in sustainc'd.

systematic effort and th(: U.S. progrmn lr'ading in innovation, but with less

fl_llow through. Our JTEC Panel was impressed by the appreciation givrn l_v

both manag_'rs and peers t(, people who do synthesis, processing and scale-,,p.
Sprcial refi'rence sh, mld be made to thr strengr.h and brradth of apl,roach

of the ,'[almnC's_'lahoratories in the ,,,ynthcsis of new superconducting materials.

Cansistent with the hig,h priority given to materia!:s research and the search fin.

now matrrials, almost evrry .lapanrse laboratory that x,,'rvisited h'M som_. effort

in discrn'rrinK n_'w suprrconductinK materials. Particularly notable is the. very

lm'_" pr_,,_rmn ((w,,r ill(} r,.s_'arclwrs nationwi&.) in orKanic Sulwr,'on(lm'lors

flmnd in .lnl,an,'._*' ulfiv_'rsil i:'s and in sore,, nat i(,nal aml industrial lal)oraT,_xi_,s.

This _.ff_1"tis _zl o1,b'r _f m_gnitudr lal'g;_'zth;m llw correslmzMing rff_,l't in the'

U.S. Th,,_,.j_ th," hi_,h,.s_ T_ vain,, f,,r ()l'_al_ic superconductors is i_,rsenti.v ,mh'

--- 1II':. th,'r,' is _r,.at ,,l)timism mn,)n_ w,,rk(,rs in this at(';, h)r increa:;in,t_ T- w, 11

;_l,wr the' l_l,'s_'nt vM_u's. \V<_l'ki_ in a fi_'ld that w:,s _rigilmlly I)iOl_,'ere(t in the'

I.'.S. and Frm_,',.. th,..lalmn_.s,' rvscarchl.rs ha','_' ,tis,',_vrr,.d Inm_y lWW or,_anic

sup_'r,'.ndnct,,rs, mM hold *h,' :_.c_rd fl_r th," ifi_lw,-t 7) ('.-. 13I,2 r,'l_',._,,t tw ira,,

l_,l_orat_ry ,_n ,,n_' oc,'asi,m), With r_._a,_l to h,.avy F,'rmi,m S,_l_,'rc,,n,tm't,,r.-
whi,'t_ ar_' ,,f gr,'_t t l_,',,r,'t i,'a] ild,'r,'st. ' h,.rl' is lm'S,'nt ly much h'ss act ivit y ( h,ss

tha_ 1,5 r,'s_'arcl,'rs)i_i .lal*_n ,','lati,,' t,, tlw U.S

9

1990013093-028



1.5 Special Initiatives

Traditionally, Japanese industrial laboratories have not been strongly involved
in basic research, and this is also the case with regard to superconductivity re-

search. To significantly increase the involvement of Japanese industry in basic
research and to enhance technology transfer to industry, the c-mcept of ISTEC

(International Superconductivity Technology Center) was introduced by MITI
early in 1988 and the concept was implemented into a brand new laboratory
within 8 months, with Professor Shoji Tanaka, a famous professor of Applied

Physics, retired from the University of Tokyo, as Director of Research. The

speed of implementing a concept, preparing and approving a proposal, and

funding, designing and constructing a facility was truly impressive. The ma-
jor fu,ctions of ISTEC include a large research program (with laboratories in

Tokyo and Nagoya), the sponsorship of one large symposium per year [13],

the publication of a superconducting journal (4 issues/year) [14] with Japanese
and English editions, tile sponsorship of several small workshops (-_ 170 par-

ticipants) during the year, and the sponsorship of surveys and studies. The

superconductMty research program at ISTEC is organized into six operating
divisions: (1) Physics and Characterization, (2) Ceramic Materials, (3) Organic

Superconductors, (4) Chemical Processing, (5) Physical Processing, (6) High

Current Density Studies (Nagoya Division). There is also a computer services

group that will l)rovide wtrious srrvices to thr whole laboratory. At the time of
om visit, there were 86 rrsearchers in Tokyo and 9 at Nagoya, 111 supporting

industrial memb('rs (inclu(lirg 7 forrign companies, 5 of wh;ch were American).

and 46 filll SUl)port level companies..To qualify f(,r filll support level statu.;, a

company is require(l to contribute an rntry fee of $800K in additi_n to a sus-

taining fee of $100 K/year and thr salary support of up to two key researchers
from their coral)any. With $6.8 M/year in direct support from MITI, ISTEC

has a research supl)ort budget of $17 M/year plus salary supl)ort. The ISTEC

lal)oratory is located in rent('d Sl)aCr, consistent with tile l)bUmrd lifi'timr ()f

10 years for thr lal)oral()ry.
Our JTEC Panel f(mn,l _hr attitudrs of Japanese COml)anies toward IS-

TEC very inter('sting. Although th(' c()ml)alti('s supporting ISTEC r('l)res('nl

al)l)r()ximat('ly ()n(' half ,)f thr .Ial)an('s(' Gr()ss National Product, m,)st c()ml)any

mana_.('rs did not s('("nmch direct l)(,n(,fit of the consortimn to their coral)any
n(,('ds and intrrrsts. S()me manag('rs ev,'n qu(,sti(mrd th(' wisd(,m c)fcommitting

s() many res()urc('s for surh a long, tiln('. By and larg(', the .|apan('s(' ('()nlI)alli('s
w(' visited f('('l that th('y can carry out what(,v('r R&D ix nrcrssary for l)oth their

short t('rm mid I()ng trrm n(,,'ds. T() th(.m, l:articipation in ISTEC ix a "'tax"
f()r :<-m(' (),,',,rall l)(,,l('fit t() th,' w()rld. Wlt(.r,,as most ()f)h(, ISTEC rrs('arch('rs

at(' c()ml)any ('ml )l()v,','s wh()s,' car,,('ts will likely I)(. ,'nhanc('(l l)y th,'ir ISTEC

I()
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experience, the ISTEC middle managers seem to face a less wall-defined career

path. Or, the basis of our laboratory visits, the JTEC Panel was _trongly per-

_ suaded that ISTEC will have a significant impact on superconductivity research
: over the next decade.

The Japanese have been very quick to implement the consortium con-
cept for superconductivity R&D through the MITI-sponsored ISTEC program,

the STA-sponsored Multi-Core project, and the Monbusho--sponsored Spe-

!' cial Project for Research on High Temperature Oxide Superconductors. The

Japanese had previously used consortia in other fields through government
leadership, though perhaps on a smaller scale. While the U.S. has also taken

i initiatives to form consortia, pilot centers, and Science and Technology Cen-
ters for superconductivity R&D, these con_)rtia are not as fully imlfiementrd
as are their counterparts in Japan. In most cases, the Japanese take time to

reach a consensus, but once at consensus is reached, the Japanese government
is prepared to assume a consistent, long-term commitment and to provide in-

cremental resources for industrial participation. As our JTEC Panel reviewed

the present Japanese industrial base in superconductivity, they concluded that

their cc)nsiste2]t, long-term (5 10 years) commitment to specific progrmns has

allowed the Japanese superconductivity industry to leap frog the American

counterpart.

The ERATO progrmn is another attempt to enhance creativity of Japanese

researchers, According to this progrmn, scientists and technologists ace COl>
sidered -ts creative artists. The program identifies a handful of creative leaders

each ",'ear, and allows each leader to designate a suitable R&D area for intvn-

sire exploration for a 5 year term. Each leader is giw'n a budget of about

$3 M/yr (and often more) and is allmved to select 10-15 rese,trchers t() work
with him. The only SUl)erconductivity progrmn that has been selected thlls flit"

(()tit Of the 14 programs ill progr,'ss and the 7 COlnpletod Im_grams)is that oI"

Prob,ssor Gore of the Univrrsity of T,_kyo. The progrmn, to br supportrd by i
STA from 1986 1991 is entitlrd "'Qu:,.n'uni ._,[agllrt() Flux Logic Project" and

is based on the idea of using ,migl," flux quanta as bits of infl)rmati(m. In this

project, Profi'ssor Gore will e::plorr circuits and apl,lications of th,' d.c. flttx

parametron, a novel concept introduced by Goto and usvd here in the contvxt
of Joseph,,_m jmwtion elrmrnt,,, in a magnetic flux loop. Involved in the project
iS a tealn of 17 re._.archrrs from three COmlmni,'s working under the din'ction of

Professor Gore of the Ulllvvrsity of T_,ky-, making use of the differem tah,nts.

technology and facilities of th.' participating organizations, and managed by a

technical mmmger, on leave fi'om Hitachi. No stwcific El{ATe high T, SUlWr-
'_ conductivity projects ate plmmrd, because of tiw feeling that this rese;|reh ;tl't,rli
, is well covered by other f'.,tlding mechanisms. On the other hand, some .f t}."

: other ERATO progranls may al,:(: lmvr sonw small sui)ercon<luctivity projrcts.



though superconductivity is not their main fiwus.

1.6 Large Scale Applications

Our JTEC study h_'_ focu._.d on hoth the science and the tedmology of su-

perconductivity R&:D in Japan. To discuss the h_pic of SUl,ercond_lctivity

technolog, h' alld the potential for applications, it is usrfid to note the appar-
ent difference of objectiw's of high T_ superconductivity R&D in Japan and in

the U.S. Whereas the Japanese are heavily iz,volved with large scale applica-
tions, such as inagnrtically levitated (Maglev) transp<_rtation systems, rnerg.v

generation (Suprr G.kl) for the civilian sector, the U.S. emphasis is significantly

directed toward drfrn_" g_mls, utilizing supercCmducting ,.h,rtr_mics. including

mirrowaw, vlrctr.nics, and forepart rnrrgy storage systrms {for SDI). Both

countrirs )my,, invest,.d signifiranrly in th,, apl,lira_ion of SUl,,rconduc_ivi D" to
high ellergy physirs, ;dth,,ugh tt,,' higda,rr rffott is in tt,' U.S. vi;t thr T_'v;tll_ll

at D'rmilab nnd t|,,. Suprrc_mdurting Sulmrc_llidrr. It is notrworthy th;,t ,,v,,n
befor,., thv disrow,ry of high T suprrron, hu'tivity, th,, .lalmnrsv w,,r,' ah,,adv

eOllllllillt'({ tO igho 1¢_I1!_ tl,llll C()llV,'l'Si()ll ()f l}lcir I_()w_'x gl,lll,l'atlillg ..-tati_ii> t_

._uprrrondurrin.g sr_m,r _m,t r,_t,,r w,nding,, t_ r,,d,u',' l,,m'rr Io,,.s,,s {Th,,ir .M,,m-

light Pr,,jrct t. B,:'raus,. _,f rhr l_lrg,, inv,.stm,.nt inv,,lv_.,l in this c_,tr.'rr.-i,,n.

exl,l_rati_m _f l,,s,_il,l,, a,tvat,t;_e,,,- _f high T ,ml_,'rc-n,hu't,,rs is of l,_t,.n_i;d

,,r_m_mfic ,-i_nifiraxtc,, t_ rhr Jalmltr_.,. p_w,.r indu,,,tr.v.
Sillr,' h_lh .]_q);tll ;_lld lhr I.'.S. }law a significum SUl,,.r,-_m,hu'_ivivy indu,-

t.,.v in l,la,',' },as,,d ,,n ]arg," :,al." al,pli,'ati,ms. :h,' .ITEC pan,'] },,'li,'v,'s _ha:
tit,' prrsr_,t str,u.rure _,f rhi> industry in ,.ach comzrry will influem-,, its furur,,

drw'l_pmrnt as w,'ll a_, rim likrly r_)h, th;_ th," high T, SUl,.rr_md,u'l,_rs will

rv,.ntually play. Thrrrf_r,, it is _f itnl_rranrr h_ s_mmmrizr s_m_r ,_f vh,, rhar

;u'teris_ics -f this industry.
B_rh .lapa_, ;,_,d Th,, I'.S. }law arhi,,v,,,I a hig}, l,'v,'l ,,f imh,s_ri;,l ,',,_,q,.

trnre in hitJ_ rurr,,_,t, high field sUl,'rr, md_wtittg Ill;tRiter t,','hn_,l_,g,y, which i>

lhr c,_rner,r,m,. _,f rift,, in,lu,rry It, .l;qmn. reaRm.l- al_l -y_.h.tns _t,,, SUpldi,,,l

l,rimm'il.v It" rhr,,,' t,_;_j,_r h,.;_vy ,'l,'_'_rir_d m_,'hit,'rv r, mqmni,..-: Hil;,'hi..",lil-

sul,ishi a:td T,,shii_a |,_ th," Unit,'d Statt,.s. m;tt_n..t_, ,itd .-.vstClllS;tll. sul,l,li,,_l

},v larg,, r, mq,;mi,,s ,._,'h a, (;rn,'_al D.vnan:i,'s. Genrr;,1 El,'r_ri," and W,,.,ling-

h.usr. Hmvm',.r. tmlik,, tl,. sirua:i-n in .lapan th,'re is ;tl.-,_t,mj_r Imrtirip, ti,,n

in ,nagn,'t l_r_),lucli,,n hy _mallr, c_mq);tnir.,, such ;ts G,'n,'r;d At_,mics. ()xfi,r_l

SUl-,rr_,ndurt_,rs. lnt,'rma_n,'tirs G,'n,'ral (IG('), and An,,ricun *l_t_n,'_ir.-. In

,lal_ml_.sUl,,rc_mducring, wit,, and c;d_l,.s fi,r mag;n,'t s _m"supplird ill par! 1_."r;_-
hi+' and wirr subsidiari,'., ,)f }tita,'hi, Mitsubishi. an,I "l',,.,hil,a. H(m',,v,'r. small,._.

indrlWndrnt cul,l,' _ttd wir,. ,'O,nlmnir,, ,_u'h as Sumirotn_ Eh'rtrir. F_,ruk;m'n

1_'2
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Elrctric, Fujikura Electric, and Kobe Steel al.,_) provide aggressive competition

ill the materials market; in some cases thesr materials companies also supply
magnets or magnet systems. In the U.S.. superconducting wire and cable art"
lllltillly mtpplied by very small to llle_'|illlu-sized colnpanies such as Intermagnet-

ics Gen,'rM. Oxford. Su|)t'rcoll, ItVall-Cllalll_ Teledyne alld New England Electric
(Cabling). Whereas U .S. superconducting wire and cable maimfacturers supply

the domestic market primarily. Japanese suppliers cotnpete aggressively ill the
U.S. market.

At present, the only serious commercial market for superconducting IIlltg-

nets is the magnetic re._mance inmging (MRI) market. About 1,000 systems

have bern installed in t|te U.S.. with lll/t_Ilets lll_liIlly from G.E., IGC and Ox-

ford {Unitrd Kingdom). About 200 SVsI_'IIIs are i': _q_eration in Japan. lnainly
from Hitachi..Mitsut,ishi. and Toshiba.

S_.vrral of the superconductivity c,,mpani,.s and national laboratories we

visited were acdv,'ly considering the ,'ommrrcial ,,,,ssibilities of a "table--top'"
.-..vnchrotron _n'bit al radiation (SOR) "nachin,' fi_r lit hographic applications by

the semicon,htct,,r industry it: *l,_,'SH_)IlliCI'Oli range. At least one successfltl
lllachillv ha.,4ah'oady })Cell built for NTT by Ititachi. })lit ;, _o high a cost (over

$10il ._I). that th,.s,, nmchinrs may not hr comm,.rciall.x viabh.. The lewq of

,,'tivit.v in th,, I_'.S. _lll th," dcvoloplllCltt <,f llll S()_ lllaChilie sOelllS to be lllUCh

l_,wvr :hart in .lal,;,n.

The lu'incil_,l :tinmlus h,r high fi,'ld SUl)rrconducting magnet develol)ment
[ms tra_iiti_mally C_,lll,' ft_,lll ;tdV;tllCCd trclulology ill oth,': ',Mds such as fllSiOll,

h.,dt ,'u,'r_y physics, magm.tic h.vitation, energy storage, power generation.

err. In both .]al)all and th,, I_'.S.. these trc)mologies are Inltillly spollsorcd alld

sllpportrd by l_'JVi'l'lllllt,l_,Iagcnci0s and/or govcrnlnellt (national) laboratories.

Ft'_ml _)ur visits Ii, vmi,ms .]apancs,, national laboratories (see Appendix B).

our .ITEC t,.atn d,'t,'rmin,'d tl,at the .'Japanese governlnent played a h'adershil)

r,,le it_ d-v,'l,,l,in_ ;rod iml_l,'n,'uting, COllsistollt policy toward tile supercon-
ductivity in_htstry. ()i1o ill tlt,'it p_licics is t_) contract out all SUl)0rcondllctillg

llllt_llCt Cllgillt"_'l'i'lg t,' i,rivat,, imlustry, whih' lllailltainillg a close working rela-
tion 1,etw,.rn a imtional lab_nar_n'y and industry through the various phases of

magnet d,'si,im and d,'v,,l_,pmont. This policy has bern successflfl in enhancing

t l,' commercial capidfilit.v of th,' 3almn,'sr superconductivity industry, and has

l_r,wi,h,d a v,,r.v .,th'ctiv,, which' t'<)rtechnology transfer. While both American

and Jap;m,,sr industrial h'ad,'rs a_,rcc that t0clmology transh'r between national

lal.m_tori,,s mM indu,,,tr.v is v,,r.v diffficult, the Jalmn,,se have nlanagrd to pro-

vizir a significant mtml.'r _,f succ,,ssfifl examl_h's of such technology transfi'rs

to tt,' SUl_e1"<'_niductivity it,htstri,.s (b_,th ill the case of la1"Noscale at)l)licatiol_S

and suporc_mductinv, el, _r,mic.,,)

In c_mtrast, U.S. a_,,.ncy l_oli.'y has I>ocn mixed. In some cases, priwm,
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industry has been used for the development of the magnet technology (e.g.,

DOD, and DOE fusion programs), while in other cases (Fermilab, the magneto-

hydrodynamics (MHD) program), magnets were both designed and built at na-

tional laboratories. Even when magnets have been built in American industry,

there has not been a strong working relation between the national laboratories

and industry, starting from an early stage in the design. It is the opinion of our
JTEC team that the more consistent and more continuous industrial involve-

ment of the Japanese companies with superconductivity projects over the past

two decades has served to strengthen the technology experience base of their

major magnet and magnet wire suppliers relative to those in the U.S. Efforts

are now underway through consortia and other means to enhance technology
transfer from the U.S. national laboratories to industry. It is to be hoped that

these efforts will also include a more consistent procurement policy designed

to stimulate engineering development iv private industry in the early phases of
superconductivity projects.

Both in Japan and in the U.S., the superconductivity industry is mainly

driven by large, government-sponsored projects, as mentioned above. The two
major current Japanese projects are: magnetically levitated (Maglev) trains

and superconducting electric power generators (Super GM). With regard to

magnetic levitation, a high speed vehicle has carried passengers at 520 km/hr
on a 7 kin long track near Miyazaki (Kyushu Island). Although steady progress

has been made, many engineering problems remain to be solved before a seri-

ous inter-city main line system based on magnetic levitation can be considered.

Magnetic levitation research for transportation applications has not been vigor-

ously pursued in the U.S.. mainly due to emphasis on developing airline systems

and passenger aircraft.
In the area of energy generation, MITI has launched a 10-year, $100 million

project to develop a superconducting generator at 200 MW, with Fuji, Hitachi,
Mitsubishi, and Toshiba. The hmg term goal over the next 30 years is to

develop superconducting systems for energy generation in Japan, independent

of potential benefits from the use of high-T_ superconducting materials. Despite
extensive U.S. pioneering research (at MiT, G.E., and Westinghouse) with
superconducting generators, there is presentls no superconducting generator

R&D project in progress in the U.S. There arc however serious developments

ira this area in W. Germany and the U.S.S.R., as well as in Japan. The absence

of such a capability could greatly weaken the commercial position of U.S. power

generator inanufiwtm'ers after 200(I AD.

At present, the U.S. also has two major superconductivity projects, the

super-conducting supercollider (SSC) and superconducting magnetic energy

storage (SMES). The SSC magnets have been engineered in the national lab-

oratories, again fi>llowing the lint tern discussed ab(we. An "industrializa, tion"
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program, leading to private manufacture has begun recently. The estimated

cost of the magnets is around one billion dollars. The Japanese government

has been invited by DOE to "collaborate" oil the SSC project. Any serious

commitment of funding from Japan would probably result in a request for

participation in magnet manufacture. In this connection, it is interesting to

note that the Japanese superconductivity group at the High Energy Physics

Laboratory at Tsukuba (KEK) had definite ideas on how to improve the man-

ufacturability of the SSC magnets (see §4.6).

The U.S. SMES project is an SDI activity, oriented towards pulsed energy
requirements for beam weapons, ttowever, the device may also be useful for

shaving peak power needs by electric utilities. The present work (involving 2

separate contractor groups) is focused on the conceptual design, and no SMES

construction is in progress. Without some practical experience with such large

coils (> 100 MW-hr), it is difficult to assess the technical or economic viability
of the system at this time.

The heart of superconducting magnet technology is the superconducting

wire used to build the magnets. Both in Japan and in the U.S., the R&D and

commercialization of the magnets and tile magnet wire often occur in different

laboratories and in different companies. At present there appear to be at least 7

world class Japanese suppliers of low-T_ superconducting wire, tape and cable.
This compares with 4 companies in the U.S., of which one, Oxford, i3 British

owned. With regard to the superconducting wire most widely used today, based

on the Nb-Ti alloy with filaments in the 6 to 20 pm range, Japan and the U.S.

both appear to have competent domestic suppliers. Development work for the

SSC has improved the critical current Je at a field of 5T, and similar progress

has been made in Japan.

Advanced conductor work in Japan has made noteworthy progress ir_ the

development of submicron filaments, designed to lower a.c. and dynamic losses.

The Japanese now have Nb-Ti wire with 0.5/zm filaments in production and

are carrying out research on filaments as small as 0.03pro (see §4.8.1). The

Japanese work seems more extensive than the American work in this area.

Another area of conductor development on which Japan has placed special

emphasis is the development of high J¢ conductors • fields above 15 tesla. In

a team effort between industry and NRIM, advanced multi-filamentary con-
ductors with the (Nb,Ti)aSn and NbjA1 compositions have been developed to a

practical level. Work i:_also in progress in Japan on Chevrel phase conductors.
This is not, at present, a large m_u'ket area, but it does place the Japanese in

a good strategic position to advance the high field magnet art up to 20 tesla

and possibly beyond. Our JTEC Panel concluded that Japanese capabilities in

superconductivity for the next generation of magnets (above 15T) significaatly i
exceeds capabilities in the U.S. and the gap is widening.
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High magnetic field testing facilities in both the U.S. and Japan are used
for basic research and for the testing of materials for superconductivity ap-

plications, such as for high field magnets. For magnetic fields in the 15-30

tesla range, provided by water-cooled, superconducting and hybrid magnets,

the principal Japanese facility is presently at Tohoku University, Sendal. It is

of interest to note that _ 2/3 of the usage of the high field facility at Sendal is

for superconductivity research. The JTEC team judged the Sendal facility to

be roughly comparable to the facilities at the Francis Bitter National Magnet

Laboratory (MIT). However, the U.S. facility appears to have a much larg:er

"outside users" program than exists at Sendal. The Japanese are planning a

new government high field facility for Tsukuba City to include a 40T hybrid
and a stand-alone superconducting magnet facility with fields above 20T. The

superior Japanese work on superconducting materials operating above 15T (al-

ready noted) puts then', in a position to leap-frog the U.S. in this important

high field region.

1.7 Materials Processing

The realization of large scale superconducting applications depend heavily upon

advances in the processing of superconducting wires and tapes (see Chapter 5).

Since the Japanese already }lad a strong ongoing program on the processing

of conventional (i.e., low-To) superconducting wires and tapes, it was natural

for them to give significant emphasis to this area of materials R&D as they

mounted their high-To superconductivity materials program. The visit of our

JTEC team to Japanese laboratories confirmed that their R&D effort in the

materials processing of high- Z: superconducting wires, tapes and thick films is

extremely strong, and that good progress is being made, although still far short

of the goal of equivalence to low--T, superconductor parameters ( J_, H_2). Many
of the U.S. laboratories are also attacking this t)roblem, and it is not at present

clear whether sufficiently high Y¢ and H¢_ values can be reached, nor who will

eventually succeed in solving this difficult problem (see Chapter 5). Though

most of the Japanese effort has its locus in Japanese industry, important generic
R&D is carried out in their nat ion,l laboratories (ETL and NRIM). With regard

to processing techniques, the Japanese have perhaI)s had their greatest success

with the quench and melt growth (QMG) method, a tectmique first applied
at AT&T Bell Laboratories and quickly taken up by the Japanese (see ,_5.4

i and §5.5). In the hands of the NilWm Steel groul), the QMG method has

yielded critical cun'ent densities of .1,, > 10'lA/cm 2 at 1T. Other approaches

to the processing of superconducting tapes have also sD:wn pr_,mise,including
the silver sheath method [15] and the doctor-blade method [16]. Although
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"214"HTSC's
DISCOVERED

1970 t980 1990

Digital Josephson JapanU.S.

SQUIDs Japan
U.S.

VoltageStandard Japan _ - - -,,,
U.S. r:z:_zz_zz,..-

Sampler Japan =zz:zz=z_U.S. ¢z=: ..-.,_

Analog-to-DigitalConverterJapan
U.S. ¢zz_ .... ; ...... i

AnalogSignalProcessing Japan
U.S. =, .. , =

Mixer Japan ¢_=2z
U.S.

ExploratoryTransistors Japan
I'.f. "_.47,41P.0"_

Figure 1.1: Comparison of Japanese and American R&D trends in low-T¢ su-

perconducting electronics. Schematic bar graph of the development of super-

conducting digital and analog electronics. The periods of most intense activity

are indicated by the black regions of the bar, moderate activity is cross hatched
and only small activity is unshaded.

Sumitomo Electric and other companies have stated that their goal for 1989

is a critical current of 10'_A/cm 2 (at 77 K and zero field) in a high--T_ wire or

tape, our JTEC Panel considers this goal as a major challenge to these Japanese
researchers.

1.8 Supercondvcting Electronics and Thin Films

Although superconducting el(,ctronics presently plays only a small role in the

commercial superconductivity industry, it is an area that the Japanese and

Americans both consider to have high potential for future commercial applica-

tions. Both countries recognize that thin fihn processing is a very important

technology for an,dog and digital superconducting electronics, and for the even-

tual utilization of both low -T, and high--To superconductors. Therefore, both

Japan and the U.S. are very actively engaged in R&D programs on thin film

growth, characterization and application to superconducting electronics.

The pioneering research on superc'.mducting electronics was done in the U.S.

during the 1970's (see Fig. 1.1) with the IBM program in a leadership position.

The Jal_anese only ('nterc'd the fi¢'ld a decade later, but most Japanese comtm -

hies (Fujitsu, Hitachi, NEC) remaiL, ('ommitt(,d to superconducting electronics,
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after IBM and the other American companies dropped out in 1983 (though the
largest single Japanese program at NTT was terminated at about the same time

as the IBM program). The_e committed Japanese companies used relatively

small groups (10-15 researchers), and focused their efforts on core technology is-
sues such as integrated circuit (IC) processes and circuit design, rather than the

extensive multiehip package and systems work that IBM had pioneered. With

the Japanese government setting the policy, and resources provided by MITI,

ETL developed a generic improved all-refractory Josephson technology based
on Nb/A1203/Nb trilayers. This technology was implemented in a _,10-1evel

IC process by ETL, which was pervasively used by ETL, Fujitsu, Hitachi and

NEC, and is now being adopted world-wide for analog applications. Because

of their extensive experience with this refractory technology, th ,;. 1 horato-

ries are well ahead of any U.S. laboratory, though the NIST voltage stal, !-_,'d,

the most sophisticated American effort, deserves special commendatioh (see
§6.2.4).

The Japanese progress with superconducting circuits, particularly in logic
circuits, has been great and is continuing effectively. The first microprocessor

chip (4-bit) was produced by Fujitsu in 1986 and steady progress has since

been made, achieving a 3056 gate chip operating at 1.1 GHz by 1989. While

further progress with logic circuits is expected for the next year and beyond,
the progress toward achieving dense memory chips has been slow and may limit

long-term prospects for Josephson superconducting technology in computers.

Presently MITI is sponsoring a 10-year high speed computer project, including

Josephson technology, due to end in 1990, with a goal to achieve a high speed

working system by the end of the program. The follow-on activity after the

termination of the MITI project is uncertain, and will largely depend on the

assessment by each of the three Japanese companies (Fujitsu, Hitachi and NEC)

of the potential for significant commercialization of this digital technology.

With regard to analog superconducting applications, Fig. 1.1 shows that in
almost all cases, the Japanese got off to a much slower start than the U.S. There

is now good Japanese work in analog SQUIDs, and in some areas the Japanese

may reach a leadership position (e.g., the Fujitsu digital readout for SQUIDs).

The Japanese also have some superconductor-insulator-superconductor (SIS)
mixer work and some Josephson voltage standard work (see Fig. 1.1), but little

other high frequency electronics activity. In general, the U.S. has had more

extensive experience in analog superconducting devices and is presently ahead
in this area.

There are significant accomplishments in both Japan and the U.S. with

regard to electronic device applications for high-T_ superconducting materials.
At present, the Jal)anese effort is almost entirely directed towards materials

research and they have less immediate concern with specific electronic device
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applications. Thus, for the most part, the Japanese did not enunciate specific

electronic device objectives for the near future, though they did indicate that

passive elements (e.g., filters, interconnects, etc.) will probably be implemented

before active devices (e.g., tunnel junctions). In the area of thin films, the
Japanese had accomplished several notable achievements, including the first

achievement of critical current densities Jc > 106 A/cm 2 at 77 K [17], the first

growth of ultrathin (-,, 100,_.) high-T_ films [18], the first layer-by-layer growth

of n = 3, 4, 5 layers of CuO2 per unit cell in BiSrCaCuO films [12], and the first

achievement of Jc > 106A/cm 2 at 77K using a chemical vapor deposition (CVD)

technique [19]. The thin film capabilities o_ Sumitomo Electric were especially

impressive insofar as they had achieved Jc values in excess of 106A/cm 2 at 77",(.

in all three high-T_ systems (YBaCuO, BiSrCaCuO and T1BaCaCuO) during

10ss[17].
Another thin film achievement of note was accomplished through a Japanese-

American collaboration [20] between NEC in Tokyo and Bellcore in New Jersey,
whereby the NEC researchers provided a specially prepared silicon substrate

with a double buffer layer of MgAl_O4/BaTiOs for lattice matching to the

YBaCuO high-To superconductor which was deposited by Bellcore researchers
_lsing the laser ablation technique (see §6.3.2). Whereas inter-company col-

laborations would be very rm'e in Japan, this excellent research achievement

provides one noteworthy example of industrial collaboration between two coun-

tries. Outstanding thin film growth is also being done at some Japanese uni-

versities, such as the University of Kyoto, Tohoku University, Osaka University,

and is beginning at the University of Tokyo. Typically a Japanese industrial
thin film group would consist of a strong leader (usually a Ph.D. who had spent

some time abroad) and strong technical (B.S.-level) staff support to optimize

the processing. To balance this relative strength of the Japanese program, is

a less stimulating environment for the Ph.D. researcher with regard to active,

critical peers to ._',imulate creative ideas. Our JTEC team also felt that in

Japan the couplir, g between the thin-film materials researchers and the device

experts was usually not as strong as in the U.S.

Our JTEC team judged that overall, the high-T_ superconducting thin film

achievements in Japan and the U.S. are at present comparable and both are

making very good progress. Direct comparisons were in some cases difficult

to make because of different definitions of the superconducting transition (see

discussion in §6.3). Broadly speaking, the U.S. has given greater emphasis to

the laser ablation technique and is more vigorously pursuing the electron beam

evaporation technology, while Japan seems to be emphasizing the sputter depo-

sition and chemical vapor deposition technologies. Whereas the laser ablation

and electron beam evaporation technologies are very valuable for research work,

the Japanese may be in a stronger position with regard to practical applica-
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tions since the sputter deposition and chemical vapor deposition techniques

are more amenable for scale-up and device applications. In the U.S. at present.

there appears to be more direct coupling of the materials to their potential

device applications, probably reflecting the greater diversity and experience of

U.S. researchers in low-T_ analog device applications. Since early high-T_ elec-

tronics applications will likely be in analog devices, the U.S. is at present well
positioned to lead in these areas. U.S. leadership is threatened, however, if

superior low-T_ technology remains the norm in Japan and if the analog device

expertise in Japar grows in conjunction with their expanded superconducting

thin-film and el.:ctronics developments. The Japanese are maintaining strong

low-Tc electronics programs as a critical component of their superconducting

technology development effort.

1.9 Concluding Comments

As the JTEC Panel members reflect on their visits to the Japanese laborato-

ries certain themes have emerged. Because of their perceived importance of
the superconductivity field, the Japanese have selected superconductivity as a

flagship research area. The Japanese have indeed had a long record of interest

in superconductivity, and in support of this interest the Japanese government

has launched long-term sustained programs in superconductivity, both in large

scale magnet projects starting in the 1970's, and in the 10 year MITI-sponsored

digital superconducting electronics program of the 1980's, along with a long-
term commitment of the Japanese Railway to the developnmnt of magnetic

levitation technology. More recently in the high-T_, area, the Japanese gov-

ernment has been instrumental in launching the Ministry of Education Special

Project on High Temperature Oxide Sulwrc(mduct(_rs, the MITI-sponsored In-

te:national Superconductivity Center (ISTEC), and the STA-sponsored Multi-

core Project in Superconductivity. \luch _f the emphasis has been applica-

tions driven, where the importance of systematic, sustaimM effort has been

appreciated and widely implemented. Recognizing the imlmrtance of materi-

als research to both basic research and flltm'e commercialization, the Japanese

have put relatively more effort into materials research titan has tho Americans,

taking advantage of the Japanese strength in solid state chenfistry, matorials

synthesis and materials processing.

As we talked to ,[ap_lnose reso_lrciwrs wc were surprised to discm'cr the

large number of similar challenges that we both face, including the difficulty of

technology transfi'r fl'om basic research at universities and applie,l research at
government laboratories t(, industry, and the declining interest of mttive-b,_rn

young people to pursue advanced graduate studies in science and ent_inoel'ing.
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Through a comparative assessment of the Japanese and U.S. superconductivity

R&D programs, the relative strengths and weaknesses of each prograrn become

more apparent, as do steps that should be taken to strengthen each prograan. A

compz_rative R&D study could also lead to increased international cooperation

in superconductivity R&D between Japan and the U.S. and an increased inter-

nationalization of the leading superconductivity R&D centers in Japan. The

leading American R&D centers have for many years been highly international,

benefiting from the talents of the most creative people around the world. This

is one area where the Japanese can benefit from the positive U.S. experience.

Since Japan and the U.S. are both strong in superconductivity R&D, there

are many opportunities to work tegether and learn from each other. Because

of the greater emphasis of the Japanese on sustained, systematic materials re-

search, they are offering us strong competition in research and are developing

the potent.ial to pull ahead on commercial applications.
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Chapter 2

Superconductivity Basic Science

Paul M. Horn and Robert C. Dynes

2.1 Introduction

This chapter is an appraisal of the position of Japan in the area of basic studies

on high-To superconductors. By basic research we refer to research aimed at

elucidation of the fundamental mechanism of superconductivity in the high-To
oxide superconductors. This Chapter is based on the result of visits to selected

university, government and industrial laboratories in Japan. In addition to

discussions on high-To oxide superconductors, there were limited discussions
on other types of superconductors: conventional, organic and heavy fermicn

superconductors. In Table 2.1 are listed the institutions visited where sufficient

basic research was being conducted to merit mention in our appraisal of the

Japanese position.

This chapter is organized in the following fashion. In §2.2 we d_scuss our

general conclusions from the visits and give an appraisal of general strengths

Table 2.1: Institutions visited with significant basic research.

University Industry Government Labs
Institute for Materials Research Hitachi ETL

(Tohoku University) NEC NIRIM

ISSP (University of Tokyo) NTT (Ibaraki) NRIM
U. of Tokyo NTT (Musashino)
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I
and weaknesses of the Japanese basic research program. Here we discuss the rel-

ative contributions of industry, government laboratories and academia. Prior

to our visit to Japan we prepared an appraisal of the U.S. position in basic

research so that direct one-to-one comparisons could be made, and tile presen-

tation given here follows the format of our prior state-of-the-art appraisal. In

some cases, after the visits and discussions in Japan, there was a change in the

view of the Panel regarding the relative position of U.S. science. Because of the
international character of research in this field, there were very few surprises

and the JTEC visits generally resulted in an affirmation of our earlier opinions.

Basic research in this field of study necessarily must be intimately coupled

with materials studies. The general comments in §2.2 of this chapter refer also

to tile materials studies and in most ways the separation of basic studies and
materials research is artificial. Without sound materials studies, basic research

is impossible and vice -versa. in order to compete in this field, an infrastructure

of materials synthesis and diagnostics is necessary.

2.2 General Observations and Opinions

The basic research in Japan in high temperature superconductivity is performed

in the three sectors: academia, industry and government laboratories, as is also
the case in the U.S.

2.2.1 Universities

From visits to the universities listed in Table 2.1 (see also Appendix B), w('

conclude that the best basic research in Japan is of the highest international

quality. Each of tile institutes visited were addressing deep profound issues

and competing well with their U.S. counterparts. From a poll of research('rs

at the various institutes, it is estimated that there are at-proximately 500 l)r(, -

fessional (Ph.D.) researcher:, in universities in Japan engaged in basic studies.

This is a comI)arable number to that in the U.S. and th(' research output is

also comparable. The detailed subfiehls are discussed in sul)sequent sections.

Associated with these Ph.D. level researchers are apt)roximately 200-300 stu-

dents - a number w_, estimate t,) be fewer than that in the U.S. 1)5' a fnct()r of

two. This implies that ()n the long haul, more students will be trained in this

field in the U.S. than in Japan ;rod if superconductivity ultimately bec¢)m_'s a

commercial technology, there exists a potential for more trained 1)rofi'ssionals

in the U.S. The nmnber and quality of th(' _'xperin:_'nt;dists in the U.S. an,!

Japan are judged t,) 1)(, comparal)lo.

The th¢.oretical situati(m is a little different. While th('r(. _lro cl(,arly ider,tifi-
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able leaders investigating the theoretical aspects of superconductivity in Japan,

it appears that there are not the saane numbers and "bench strength" that ex-
ist in the U.S. The theoretical physics community in the U.S. has focal points

(e.g., the Institute for Theoretical Physics (ITP) in Santa Barbara, the Aspen

workshops) where theories are continuously reviewed, critiqued, refined and

rejected. In the judgment of the JTEC Panel, this type of regular extended re-

view does not occur in Japan. The theorists in Japan are closely coupl_.d to the

experimental programs and they spend a good fraction of their time thinking

about experimental results (usually from experimentalists in their own institu-

tion). These interactions between theorists and experimentalists significantly

strengthen the Japanese basic research program on high-To superconductivity.

Finally, it was observed that ',he leading Japanese theorists are comparable to

leading thcorists internationally, are well known in the U.S., and have often

spent a significant fraction of their formative years in the U.S.

2.2.2 Industry

The largest single industrial laboratory that is engaged in fundamental re-
search is NTT, both at their Ibaraki Laboratory and at Musashino. Se,eral

other industrial laboratories have pockets of good basic research but tin, re-

search is often highly focused, reflecting the interest of the individuals involved.

Nevertheless the work is very good and reflects a general feeling that a long
term commitment to basic research is appropriate. Much of the best basic
research work was found to be rc!ated to the excellence of their ma.teri,ls re-

search twogrcmls. For example, a significant fraction of the most impressive

single crystals of (La___SI'_:):Cu()._ [10,21,22], YBa2Cu3OT [21,23,24,25], T1-

Ba-Ca.-Cu-O, Bi-Sr-Ca-Cu-O [26] and the newly discovered electron supercon-

ductor Nd2_;C_'_.CuO,a__ [27] have been grown in Japanese industrial research

laboratories [27,28,29,30,31]. Also, .Japanese laboratories have excelled at the

synthesis of new compounds, including the bismuth and thallium superconduc-

tors with over four CuO2 lay('rs per unit cell [12,32,33,34], and this success
has not '.)c('n matched in the U.S. The success of the ,Japanese workers in

materials synthesis has afforde(l s('i(,ntists from ,Japanese industry access note-

worthy collaborations in to the w(,rl(l wide community [10,29]. These successes
in mat('rials research attach great credibility to the' basic research cal)abiliti(,s

of the's[' .ial)an('se industrial ]a})oratori_'._.

The industrial laboratori('s, ()n the ()th('r hand, ar(' not w(,ll COul)le(l t()

.lal)am,s(' universities. This was r,'cognized by I;oth imrties, and several p().,.-

siblc ('xplmlations w('w off('r('(I. Historically, universities have view(,d industry

as having a strong inclination towar(ls al)l)lications-ori('nted R&D and tlws('

l)ersl)ectives take' tinw t() oh;rag('. An alternate explanation was off(,r(,d 1)y
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a representative of a major industrial laboratory who suggested that serious
barriers to university-industrial interactions were a result of competition be-

tween government agencies. It is our view that these interactions, however, are

strengthening especially in superconductivity research, and if they ever reach
the level of coupling that exists in the U.S. between universities and industry,

both elements will benefit. The universities will have more ready access to the

high technology offered by industry and the kidustries will have better access
to the brightest minds.

2.2.3 Government Laboratories

in general the government laboratory programs were very much focused on the
applied areas with emphasis given to practical goals. Compared to the national
laboratories in the U.S., there was very little basic work going on in these

Japanese laboratories, but in a few cases where there was some, it was quite

respectable, if not outstanding qu,_lity. Most of the new materials work of the
crystal chemistry variety was complemented by more focused materials science

(for example microztructure studies) in support of practical applications.

The government labt, ratories were extremely well equipped by any stan-
dards. The highest quality instrumentation was available and used. The level

of support in Japan seemed to be significantly better than comparable laborato-
ries in the U.S. and if this instrumentation were easily accessible to university

and industrial researchers, as is the case in the U.S., an enhanced national

research efficiency would result. The various laboratories visited are appar-

ently funded by different agencies and this seems to generate some competitive

friction. Communication and collaboration between Japanese govermnent lab-

oratories could bc improved to their mutual advantages. The situation is not

unlike that in the U.S. where competition for funds among the national labo-
ratories sometimes hinders collaboration.

Summarizing this section, there is excellence in basic science in all three

sectors of research performers: universities, industry and government labora-

tories. For a variety of reasons the collaborations between these various units

are not as strong as they are in the U.S., and as a result the quality and pro-
ductivity of each of the units suffrr to some extent. Nevertheless, Japan has

had a good share of the major basic research accomplishments in the field of
high-To, superconductivity {some of which are listed in Table 2.2) and our visit

gave ample evidence that this will continue. If strong interactions between

universities, industry and govrrmnent laboratories would occur, the Japanese

co_dd mow" solidly into a leadership position in high- T¢ superconductivity.

In the following section._ wr summarizr mort specifically the more actiw,
arras of basic rr_,",,:_'h.
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Table 2.2: Major basic research accomplishments in high-T¢ superconductivity

from Japan

Accomplishment Reference

Refined and legitimized original Bednorz and Miiller resul_ [35]

High H_2 measurements [7]

Discovery of Bi materials [11]

Large and high quality single crystals [27,36]

Electron doped superconductors [8]

High critical current films [17]

Bi and T1 compounds with over four CuO,_ layers per unit cell [12,32,33,34,37]

2.3 New Materials

Materials research is an area which requires intimate coupling between chemists,

physicists and materials scientists. This will be the main topic of Chapter 3
and therefore will not I)P discussed at any length here. However, in summa-

rizing the major basic research achievemeilts in Japan, we note that many arc
connected with major discoveries of new classes of superconductors as well as

significant variations on known classes (see Table 2.2).

2.4 Theoretical Studies

There are strong pockets of theor,'tical activity mostly in the universities. The

University of Tokyo has an espe(,ially strong group which addresses both the

aspects associated with the basic nmchanism responsible for superconductivity
in the oxides and attempts to m_derstand their unique physical properties suet:

as tmmeling, ol)tical i)rol)rrti('s, transport, density of states determinations a.n(t

electronic ba.nd structure [38,391. The th('orists are well coupled to the exl)er-

imentalists and function both in the r()h" of consultation on new cxt)eriments

and thinking through an,dysrs of existing results. We estimate that there are

about 100 professionals and 80 students actively doing theoretical studies on

superconductivity. By comparison, in the U.S. the number is probably twice

as large, with st.r,mgrr communication l)etwe('n them.

Scientific progress (m the theoretical origins of high temperature sut)ercon-
ductivity remains slow both in Jal)an and in the U.S. Novel new theoretical

ideas are being gcncl'atrd in b, th countries, but t() date, there has been litth'

agrecnmllt as to undrrlying inrchalfisn_s. Nnnwric;)tly intensive ('Olnlmtati(ms
cf the electroltic structure of mod,'l oxidr materials are at I)r('srnt domimm,d
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by work in the U.S. [40]. However, it remains to be seen how important this

work will ultimately be in sorting out the origin of electron pairing.

Finally, there has been a great deal of excellent theoretical work in both

countries related to tile eventual application of superconductivity [41]. This

work includes studies of flux-flow and pinning (see §2.6.2), solid state properties

including oxygen diffusion (see §3.4), and materials science properties including

structural stability and materials compatibility.

2.5 Structural Properties

An important aspect of our understanding of this new class of superconductors

is characterizing and understanding the structure of the materials. A large

part of the feedback between the chemists and the physicists is via structural

determinations and tile relationship between structure and properties. Several
different structural tools are used.

2.5.1 X-ray Crystallography

Routine structural determinations are performed in most research institutions.

These are accomplished as a matter of course when materials are prepared and

this usually involves routine powder structure analysis. A filll structure deter-

mination (including atomic positions within the unit cell) usually requires high
quality single crystal data taken on an automated four-circle diffractometcr.

However, even with these techniques, determination of the position of oxygen

ato:ns is difl:icult and may require neutron scattering studies (see §2.5.3). Both

Japan and the U.S. excel in various forms of detailed x-ray crystallography

[42,43]. In selected sophisticated studies requiring high flux x-ray sources, the

investigations in the U.S. are more extensive and detailed [43,44]. Straightfor-

ward access to good synchrotron sources has kept the U.S. in a firm leadership

position in this field.

2.5.2 Electron Microscopy

High resolution transmission electron microscopy studies are used to look at

both the crystallographic details of these oxides and pha,se transitions in them,

as well as the l)rop('rti('s of grain boundaries and the relationshi I) t)etw(,(,n

these microscopic !:_tails mid the physical properties. Excellent detaihxt work

is being i)erformed both in .Jal)a_, [45,46,47] an(t t.h(, U.S. [48] and the quality
is compa able.

Research institutes a,,l industrial l_d)oratories in 'Ial)an are well c(tuil)l),',l

with high resolution ,nicroscop('s (more so than in the United States, 1)or-
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haps because these instruments are almost all made in Japan) and they are

being used effectively. We saw i,o studies addressing the details of the super-

conducting flux lattice which results when a magnetic field is applied to the

superconductor and in this area the U.S. apparently dominates [49,50,51].

High resolution transmission electron microscopy (HRTEM), still something

of a novelty in the U.S., is now almost routine in Japan. The JTEC team was

repeatedly shown high resolution pictures of single crystal lattice fringes (see

Fig. 2.1), grain boundaries, and defect structures. A typical example is shown

in Fig. 2.1 where a high resolution image of the Tl-based compounds is shown

[46]. We conclude that in this area the Japanese are better equipped and more

active than their counterparts in the U.S.

2.5.3 Neutron Scattering

Neutron scattering has proven to be an especially valuable tool for basic struc-

tural studies [52,53,54,55,56]. This is for two reasons. Firstly, the oxygen scat-

tering cross section for neutrons is relatively large and so the positions of the

oxygen in the lattice can be located. As mentioned in §2.5.1, this information

is especially difficult to extract from other techniques. Secondly, neutron scat-

tering provides unique info,'mation about the magnetic spin structure and it is

believed that the coupling between the carriers and the magnetic excitations is

in some way intimately e(mnected t.o th(. SUl)erconductivity (see §2.10).

2.5.4 Other Structural Tools

The scanning tunneling microscope (STM) can potentially be used to obtain

atomic scale information about the physica! and electronic structure of the

surface of high temperature superconductors. For example, the STM could

be used to obtain information on the carrier distribution on the various layers

within the unit cell [.57], or to characterize local structural defects that may
be important to the flmcti(ming of these materials. In the electronic structure

area, the STM could be used to map out the magnitude of the superconducting

gap as a flmction of position within the unit cell. To date, the STM has

not yiehted definitive information with regard to the electronic structure but

research continues in Europe, the U.S. and Japan. The U.S. appears to have a

leading position in these studies.

Ion be:-m_ chamwling has proven useful for stu(ty of both the amplitude

of lattice vibrations an(l the degree of epitaxy achieved in thin fihns. This

t.echniquc measures atomic disI_la('('m('nts and crystal integrity very rapidly.

and is ('SlW('ially vahmbl(' fin" routine diagnostics [58,59,60]. At the moment,
the U.S. is dominant in this ar(,a.
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2.6 Transport Properties

Tra_lsport studies have proven most valuable in both materials diagnostics and

basic studies of the nature of the charge carriers. In addition, studies of the su-

perconducting transition in applied magnetic fields have shown behavior which
has been interpreted as due to flux creep. We divide our discussion of the

transport studies into normal state and superconducting properties.

2.6.1 Normal State

Normal state studies can potentially provide unique information about high

temperature superconductors. Specifically, they can help characterize the fun-
damental interactions in these materials, the band-structure, the electron-

phonon and the electron-electron interaction strengths. Ultimately these pa-

rameters should provide information about the validity of Fermi-liquid theory.

l If Fermi-liquid ti_eory is valid, these materials can be considered as ordinary
! metals with strougly attractive interac_ _ between electron_ If Fermi-liquid

theory is not valid, transport in th, _ materials is uniquely new and different.

The copp_-.i ,_x_des are structurally anisotropic and this is mirrored in th(ir
transport properties. Both the resistivity and Hall effect show this anisotropy,

which must be understood in any detailed theory for these materials.

With high quality single crystals available in Japan, high quality b_sic stud-

ies of the transp_,:_ properties {electrical resistivity, Hall effect, maEhet.oresis-

tance, thermopower, thermal cox_ductivity) are being performed. While r_ot

leading the American effort, the Japanese studies of the transport properties in

the normal state are of a level comparable to those in the U.S. ai._d are closely

coupled to theoretical investigations [6]. These studies will continue and wc ca_l
expect important advances in this area from both Japan and the U.S. With

a strong effort in single ci stal growth and close coupling to theorists, this

represents a notable area of strength of the Japanese program.

2.6.2 Superconducting State

Experiments on the superconducting state properties provide information about

the symmetry of the superconducting state wavefunction, microscopic param-
eters including the coherence length and the field penetration depth and infor-

mation regarding the strength of the coupling between the clectrons amt the

excitation which leads to pairing. In addition, superconducting state studies
provide us with important parameters (such as the critical current and critical

fields) which are directly relevant to potential applications. Transport studies
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Fizu,e 2.2: Pulsed field Hc2(T) measurements of the ISSP grou I) [7].

in the superconducting state can also be used to obtain information on the.

isotope effect [61,62].
The Japanese have been especially strong in studies of anisotrol)y issues and

have done unique work at very high magnetic fields. Very high lnagnetie fields

are necessary to explore the Hc,2(T) dependence, especially at low tcmpera.tures.

Some very recent work by the ISSP group on the study of H_._ at very high fields

[7] is shown in Fig. 2.2. The major point about this work is that it couht only

be (tone in Japan becau' e of the unique megagauss magnetic fields facility at

ISSP; such a high field tacility is not available in the U.S.

At least four research groui)s in Japan are systematically studying the t,'ans-

port properties in the presence of high applied magnetic fields [5,24,36,63,64,6_].
Earlier results in the U.S. which were interpreted as (l_le to flux flow [66,67,68]

have been questioned by some of these studies and tile flux flow interl)reta-
tion remains unclear. In this c(mnecti(m, some especially nice work by lye el

ai.[69] have questioned these conclusions. Careflll, systematic mcasm'ements in
La2__:SrzCu(),l system 1)y Suzuki and ttikita [70] show that resistive transition

becoming sharper as the strontiu,n c(ntc(:ntrati(m and the coherence lengths

: i: increase. This is illustrated in Fig. 2.3. Except for the mfique .]almm'se work
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in the megagauss regime, the studies of transport phenomena in the supercon-

ducting state in the U.S. are at a comparable level with those in Japan and
there is no clear leader in this area.

2.7 Thermodynamic Properties

Thermodynamic measurements such as heat capacity and magnetization are

used both as routine diagnostics of materials and as probes to study the exci-

tations from the superconducting ground state. For example, the temperature

dependence of the specific heat at low temperatures can reveal the presence

of low energy excitations [58,71,72,73,74,75]. Such studies require materials of

high perfection because extrinsic disorder can be a source of low energy states.

With the growth of high quality single crystals in Japan, the early leadership
of the U.S. in this area is being challenged.

2.8 Optical Properties

Infrared reflectivity and absorption studies have been performed on several

classes of materials (including the newly discovered electron doped copi,er ox-

ides) in both the U.S. and Japan. These studies can be generally divided

into two generic classes: high frequency measurements aimed at characteriz-

ing the normal state (e.g., the plasma frequency, ¢Jp, interband and intraband
transitions, phonons, etc.) and low frequency, low temperature studies of the

superconducting gap. In the former area, while some differences exist from

one group to another, these studies generally show an absorption band [65]

which has been interpreted as a highly correlated band in the band gap of the

insulating compound. The energy scale for this band is at about I000 cm -_

for YBa2CuaOT. While the interpretation is not yet accepted, it represents a

novel idea brought about by a combination of careful optical studies on a set of

materials prepared systematically. Optical studies at lower frequencies aimed

at identifying the superconducting energy gap suffer from the same ambiguity
as similar studies in the U.S. Nonetheless, excellent progress is being made

and important insight is being gained. The success of much of the Japanes(,
work follows from extensive studies relying on systematic materials synth(,sis

[29,76,77]. The trends as a flmction of alloy concentration in various systems

has produced an iml)ressiv(! comi)ilation ()f data.
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r 2.9 Electronic Structure Properties

Both theoretical (band structure calculations) and experimental (XPS, ARPES

and positron annihilation) programs aimed at determining the electronic spec-

trum of these materials and correlating these results with the superconducting

properties are going on both in Japan and the U.S. Band structure calculations

on complicated materials are highly computation-intensive and thus require
substantial computer time. The U.S. has a slight ac.¢antage here because of

the ready availability of time on supercomputers.

The best experimental work on electronic structure usually requires highly
sophisticated equipment. For example, angle resolved photoemission spec-

troscopy (ARPES) requires a highly intense beam of x-rays which can only
be obtained with an e!ectron storage ring or synchrotr,_n. The best experimen-

tal work in this area has come from the U.S. and Europe where the synchrotron

facilities are excellent. Some high quality work is also being done in Japan in

this area [78,79,80,81].

2.10 Magnetic Properties

Bulk magnetic measurements, as mentioned in §2.7 from a ttlernlodynamic

standpoint are often used to pro',ide routine diagnostics of new materials. Such
magnetic measurements can, however, also be used to obtain information about

microscopic interactions. For example, magnetic susceptibility data in the nor-

real state can be used to obtain important Fermi-liquid parameters [82]. The
trends of these parmneters with doping provide important check points for the-

oretical electronic structure calculations. Excellent work is going on both in

the U.S. and in Japan in this area.

Local magnetic properties are obtained in two generic ways: neutron scat-

tering experiments and resonance experiments (e.g., EPR and NMR). Mag-

netic neutron scattering has proven very valuable in yMding detailed infi_rma-

tion regarding the coupling between the carriers ard the magnetic excitatio1_s.
The nicest work in this area has b,,:en a collaboration between American and

Japauese investigators [54,83,84], and the work has greatly benefited fi'om the

large single crystals supplied by the Japanese [10,22]. However, at the mo-

ment, the only large research neutron reactor operating in the U.S. is at NIST

in Gaitimrsberg, MD and unless alternatives are titan(l, the lea(lership in the

area of magnetic neutron scattering studies could go to Europe or Japan. With

the highest quality large single crystals being grown in Japan and an avail'd_h'

.Japanese :;ourec of nel"ron, _"with 1,eoph' skill_'(l in the technique [55], the U.S.

program is in a l)recarious position. To date, the two pulsed spallation sourc_.s
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in the U.S. (at Argonne and Los Alamos) have not filled the gap of _he steady
state sources.

Resonance experiments provide information both about local moments and

about t.he conduction electron spins. High quality samples are essential to avoid

effects from magnetic impurities. A particularly nice example of work in this

area is the recent Japanese NMR experiment cn single crystals of YBa2Cu3Or

[85]. The temperature dependence of the S3Cu [86] nuclear ,'elaxation provides

strong evidence that tile superconducting ground state has a large gap for

quasiparticle excitations [87,88]. The U.S. has traditionally had an extremely
strong program in this area with excellent measurement tools. However, with

the growth of high quality single crystals in Japan, the leadership of the U.S. in

this area is being challenged. Muon spin resonance (pSR) has proven a valuable

tool for studying local fields in high-T_ superconductors and has provided an

important early measurement of the superconducting penetration depth. Be-

cause this technique is facilities-limited, the best work [89] has been done by
a truly international collaboration at the Tri-university Meson Factory (TRI-

UMF) in Vancouver, Canada.

2.11 Concluding Comments

While the various techniques and investigations discussed in this chapter are

not intended to be all-inclusive they do give a flavor for the basic research

program it. Japan. This program has a heavy emphasis on materials researc],.
but indeed addresses fimdamental questions. It is not expected that any one

of these studies mentioned above will provide the unique breakthrough which

will identify the pairing mechanism for superconductivity in the oxides. It is

our belief rather that each of these sub-fields will contribute to the overall pool

of knowledge. The e.q_ort in Japan is expanding in maiversities, industry and

government laboratories to contribute to many aspects of that pool. It is still
the case that the breadth and infl'astructure in the U.S. leads the world in this

research area. In the U.S. there is a network of scientists who have proven

expertise in certain techniques and research areas, and these people are well

known in the research community. Within this network the communication is

strong, and collaborations naturally occur in all three s_ctors universities.
industry and government laboratories. While intellectually led I)3, the uniw,rsi-

ties, the basic research programs in some Japaneseindustrial and goverz,,,.wnt

!aboratories are strong and growing. If the thr_,e elements (university, industry

and government lal)oratories) improve th_'ir imeractions so that genuine' ('ollal)-
orations become common place, basic research in Japan in the' area of hi_;h T.

SUl_erconductivity will 1)e on a par with that in the U.S.
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The "'scientific infrastructure" in the U.S. continues to flmction well, but is

slowly eroding, while in Japan it is growing. The Japanese believe that they cai,
show the world that they can make significant contributions to basic research in

this area, and thus superconductivity research in Japanhas become something

of a flagship in Japan, with commitments of research resources comparable to

those in the U.S. With sucil a strong Japanese effort, significant science will
result.
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Chapter 3

Superconducting Materials

5.4. Brian Maple

3.1 Introduction

Materials mderlie all basic research on superconductivity, as well as the tech-

nological applications of this phenomenon. Superconducting materials research

involves the synthesis and characterization of new and known phases of super-

conducting materials in polycrystalline and single crystal bulk, thin fihn and
composite form. It is a very broad and interdisciplinary research area which

enjoys the participation of physicists, chemists, metallurgists, ceramists, and

engineers. This Chapter is restricted to the major classes of nonconventional

superconducting materials (oxide, organic, and heavy fermion supercon(tuc-

tors) in polycrystalline and single crystal form; thin fihns and coml)osites of

conventional superconductors (e.g., Nb-Ti, NbN, NbaSn) ap_d high-T_ oxide

superconductors are discussed in Chapter 4 on Large Scale Applicati(ms of Su-

perconductivity, Chapter 5 on Processing of S'.lperconducting Materials, and

Chapter 6 CmSuperc(mducting El('ctronics and Thin Fihns, respectiv(-ly.

3.2 Superconducting Materials Research Prior
to 1986

Prior to the discovery of high T-sup('rc,)nductivity (i.e., T_ > 30 K) in layered

COpl)(,r oxide.'_in 1986, ext(.nsiw' r(.srarch was underway on the following typ(,s ()f

SUl)(,rconducting mat(.rials: c_)nv(,ntional high T_ SUl)erconductors (('.g., A15's,

NbN, ternary Ch_'vrel l)has( ' COml)(mnds), magnetic sut)erco1_ductors ((,.g.. rat('

earth (R) comi,ounds such as RRh.IBI, RM()(;.qs, R M_)_Ses), h,'avy f_'rmi()n su-

1)('rconduct()rs (e.g;., C('Cu:Si_, UB_',:_,UPt:_, URu_Si2), and organic SUl)(,rc(m-
i
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ductors. In the U.S., a great deal of attention was devoted to ternary com-

pounds and magnetic superconductors from the mid 1970's to the early 1980's,
heavy fermion compounds from the late 1970's to 1986, and, to a lesser extent,

organic compounds from the late 1970's to 1986, as well as the oxide super-
conductors (the precursors of t" _ present high-T¢ oxide superconductors) from

the early 1970's to 1986. In 1986, much of the attention of U.S. researchers

was on heavy fermion superconductors (because of the possibility that these

compounds exhibit a type of anisotropic superconductivity, analogous to the

triplet superfluidity of liquid 3He, involving a magnetic pairing mechanism),

while the Japanese were vigorously pursuing all types of superconductors in-

cluding ternary compounds, R-based magnetic superconductors, oxides, organic

compounds, and conventional high-T_ supercon,'uctors, in addition to heavy

fermion compounds (mostly CeCu2Si2, because of the radioactivity of U). How-

ever, at the beginning of 1987 virtually all research on these superconducting

materials on a worldwide scale came to an abrupt halt and was redirected to

high-T_ oxide compounds. Only recently have many researchers begun to drift

back to these pre-1986 superconducting materia!s.

3.3 Superconducting Materials Research Af-
ter 1986

In addition to the oxide superconductors, organic superconductors are attract-

ing a great deal of attention in Japan (see §3.6), whereas heavy fermion su-

perconductors arc receiving increasing attention in the U.S., as noted in §3.7.

To some extent, the excitement generated by research on the new high-T_ ox-

ide superconductors during the past several years has focused attention on the

phenomenon of superconductivity and its technological applicati,_ns, resulting

in renewed interest in the conventional high-T_ superconducting materials., par-
ticularly the A15 compounds.

3.3.1 Polycrystalline Materials

Most of the measurements on high-T_ oxide superconductors (and other super-

conducting materials, as well) have been made on polycrystalline sp_'cirnens.

Polycrystalline materials are generMly quite suitable for studying the eff_ct of

chemical substitutions on To, searching for new superconducti_lg phases, _md

the measurement of properties that are not affected by anisotropy (e.g., 7],...

specific heat in zero magnetic field). However, for anisotropic properties (e.g.,

electrical resistivity, magnetization, H_2) or properties that are sensitive to

the "weak link" behavior of the intergranular regions in the sintered polycrys-
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talli:m oxides (e.g., electrical resistivity in an applied magnetic field, or Jc),

single crystal specimens are necessary. Nonetheless, a great deal of useful (and

valid !) information can be obtained at a relatively rapid rate by working with

poly,:rystalline specimens, particularly during the earlier stages ot research oil a
new superconducting phase, although good judgment must always be exercised

in assessing the validity of polycrystaUine results. Polycrystalline specimens of

the oxides are generally prepared by solid state reaction of metal oxides and
carbonates. Other specialized techniques can be employed, such as sol-gel pro-

cessing, which is also being examined as a method for producing fibers and
films for technological applications (see Chapter 5).

3.3.2 Single Crystals - Anisotropy and Implications for
High Critical Current Densities

Investigations on single crystals have allowed the anisotropy of the physical
properties of the layered copper oxide high-To superconductors such as He2
and Yc to be determined. Anisotropic properties of interest include the elec-

tricaL resistivity, magnetoresistance, thermal conductivity, H¢2, Jc, etc. The

anis(,tropic behavior of two of these ploperties H_2, J¢, are of particular intere.qt
in connection with technological applications of the high-T_ ceramic m_tterials.

Whi:.e the upper critical field H,2 is itself one of the fundanmntal superconduct-

ing parameters of technological importance, analysis of its temperature depen-
dence yields an estimate of the superconducting coherence length, a quantity

that is relevant to another fundamental technological parameter, the critical

current density J¢. Specifically, tke values of the initial slopes of H,2 at T_

indicate ex:remely small and anisotropic coherence lengths _, _ 10.3t within

the basal plane (within the conducting Cu02 planes) and _¢¢-,- 2A along the

c-axis (perpendicular to the conducting CuO2 planes). Such short coherenc_,

lengths are comparable to or smaller than the thickness of intergranular regions

in polycrystalline materials. The intergranular regions may contain impurity

phases, compositional variations, oxygen deficiencies, etc., which render the'

regions only weakly superconducting or even normal, so that they behave as
weak links between superconducting gzains, and, in turn, limit ,1_. Fortunately,

,l_ has been found to be intrinsically high within the crystallites according to

measurements on single crystal tlfin films (see §6.3.2) and bulk [90] specimens.

The highest values of .l.. that have been reported to date have been achieved on

epitaxially grown single crystal thin fihns and are _>5 x 10"A/era _ (see !i6.3.2).

Recently, there has been much interest in thermally actiw_ted flux motion

in the high T- oxide supercoliductors, both from the imin" of view of the basic

physics underlying the phcnomen_m as well as its implications in limitin_ I

in these materiMs [66,67,68]. Numerous inw,stigations have bv_,n cm'ri_,,I _lIT
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on a worldwidescaleon the relaxationof the magnetizationin superconduc-

torssubjectedtomagneticfields[67,91,92],thetemperatureand magneticfield

dependenceof the resistivesuperconductingtransitioncurves[66],the obser-
vationof theAbrikosovfluxlatticeby means ofmagneticdecoration,and the

responseofthe Abrikosovlatticetoforcedoscillations[50,93].Recent work in

Japan and the U.S.,in particular,on severaltypesof high-T_oxidematerials

has revealedthat the broadeningof the resistivesupercouductingtransition
curvesin an appliedmagnetic fielddoes not depend on the directionof the

currentwith respectto the magneticfield,but rathe_depends on the orien-

tationof the fieldwith respectto the crystalaxes. These observationshave

raisedseriousquestionsregardingtherelevanceoftheLorentzforcedrivenflux

creepmodel [94,95,96]and have elicitedan alternativeexplanationinvolving

superconductingfluctuations[96,97].A considerablechallengeto the science

and technologyofhigh-T¢superconductingceramicsisthedevelopmentofways

of introducing defects into the material._ that will be effective in pinning flux-

oids, and, in turn, increasing J_ in high magnetic fields in the liquid nitrogen

temperature range.
Even without the problems associated with the grain boundaries, the mis-

alignment of the crystallites would significantly reduce J_ from its maximum

value in the direction of the a-b plane. It has proven di_cult to determine the

anisotropy within the a-b plane for the orthorhombic materials like YBa_CusOz_,_

due to the twinning encountered in most single crystals. High quality single
crystals of the high-T_ oxide superconductors are essential for a detailed under-

standing of the basic physics of these materials, since single crystals allow the

anisotropy of the physical properties to be investigated, eliminate complications

associated with grain boundaries, etc.

Japanese researchers have been aggressively addressing these problems and

have made important contributions to their solution as discussed below. The

availability of high quality .single crystals (for a nm,ber of high-T,, materi-

als, beyond what is available in the U.S.) have put Japanese researchers in an

advantageous position. In some cases, howew'r, a stronger coupling between

single crystal growers and researchers needing such special materials for impor-
tant flmdamental studies could hav_, increased the effectiveness of the overall

research out 1)llt.

3.4 New Superconducting Phases

In addition to enhancing the quality and optimizing the physical properties

of known superconducting phases, an especially important aspect of :roper-

conducting materials rest'arch is the search fi)r new superconducting phases.
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New superconducting phases provide iniormation which can be used to relate
the occurrence of superconductivity to materials parameters such as struc-
ture, atomic sizes, average valence electron concentration, etc. (empirical rules
such as Matthias' rules for superconductivity of transition metals [98]), are a
source of new phenomena, and may yield enhanced superconducting character-
istics such as superconducting critical temperature T¢, upper critical field H_2,
and critical current density J_, and mechanical properties that are suitable for
technological applications. Virtually every industrial, national, and university
laboratory visited by this JTEC Panel in Japan has a superconducting materi-
als research program with some level of activity devoted to the search for new
superconducting materials. In contrast, superconducting materials research is
on the decline in the U.S. and only about ten U.S. laboratories are presently
engaged in large scale searches for new superconducting compounds. Some of
the contributions of Japanese researchers to the search for new superconducting
phases are outlined in §3.5

The search for new superconducting materials has always been an empirical
enterprise, and this is especially true for the new high T_ oxide mate_als. Many
of the new high-T, superconducting materials have been found by chemical
substitution into a known superconducting phase, an approach that can result
in

1. the optimization of superconducting parameters such as T,, H,2, and J,
of the known superconducting phase;

2. new examples of the known superconducting phase; and

3. entirely new superconducting phases.

An example of (1) is the increase of T, from ,-, 30 K to -.- 40 K by replacing
Ba with Sr [99,100,2] in La2__Ba_CuO4__, the material originally investigated
for superconductivity by Bednorz and Mfiller [3]; examples of (2) are the dis-
coveries of superconductivity in La__,M,CuO4. _ where M is the monovalent
alkali metal Na [101,102] rather than a divalent alkaline earth (Ca, St, Ba) and
in Ln2_,M,CuO4__ (Ln = Pr, Nd, Sm, Eu) where M is te_ravalent Th [103]
in place of tetravalent (or intermcdia:e valent) Ce [8]; while examples of (3)
are the discovery of the T_ = 92 I,: superconducting phase of YBa_.Cu30¢_6
by replacing La by Y [104] in La2_.Ba, CuO4-r and the discovery of supercon-
ductivity in TI:Ba, Ca,_1Cu,,O2,+4 at 125 K for n = 3 [105] as a result of the
substitution of T1 for rare earth R and "'a for Ba in the T_ = 92 K phase of
RBa2Cu3OT__. Other routcs to the di,_ _,,cry of new high-T_ superconducting
phases are the testing for sup,,rconductivity of new phases reported in the lit-
erature, or the exploration of multicomponent phase diagrams it., connection
with superconductivity studies.
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Table 3.1: Superconducting oxides known prior to 1986.
I

Compound T_. Discovery

TiO, NbO ,-1 K '64 - J. K. Hulm et a1.[115]

SrTiO3_x _,0.7 K '64 - J. J. Sehooley et a1.[116]

AxWO3 ,,,7 K '64 - Ch. J. Raub et al.[llT]

AxTO3 (T = Mo, Re) -_4 K '69- A. W. Sleight et al.[l18]

AgrOsX --,1 K '66 - M. B. Robin et a1.[119]

Lil+xTi2-xO, ,-,14 K '73 - D. C. Johnston et al.[120]

Ba(Pbl_xBix)O3 ,,,14 K '75- A. W. Sleight et a1.[12i]

Numerous investigations have been made of the effect of oxygen concentra-

tion on the superconducting and magnetic properties of the high-To cuprate

superconductors. For example, as the oxygen vacancy concentration 6 is in-
creased from 0 to 1 in the YBa2CuzO?_s system, Tc decreases from -_ 92 K

for 6 _ 0.1 to ,,_ 60 K for 6 _ 0.3 to-,_0 for 6 = 0.6 [106,107]. For 6 >_ 0.6,

the compour.d exhibits antiferromagnetic ordering of the Cu 2+ magnetic mo-

ments which reaches --, 500 K for 6 = 1 [108]. The Ndel temperatures and

shapes of the specific heat anomalies due to antiferromagnetic ordering of the

R 3+ magnetic moments are also strongly affected by changes in 6 [109,110,111].

Superconductivity with T_ _ 40 K can be induced in the La2CuO4_u parent

compound by increasing the oxygen content above 4 (y < 0) [112,113] which

actually leads to a new orthorhombic phase [114].
The search for new high-T¢ superconductors has centered on oxide com-

pounds following the breakthrough made by Bednorz and Miiller in 1986. The

oxide superconductors discovered prior to 198_3are listed in Table 3.1. It is of

interest to note that these early discoveries took place in the U.S. and Europe.

The Japanese entered the field in about 1976 through work initiated at the Uni-

versity of Tokyo. Because of the broad experience at the University of Tokyo
in ceramics and superconductivity, a broadly based program in materials, char-

acterization and properties measurements developed. This group was thus in

an excellent position to make rapid progress in the new high-T_ oxide super-

conductors discovered in the La-Ba-Cu-O system by Bednorz and Miiller [3].
The University of Tokyo group was quick to identify the phase responsible for

the T_ = 30 K superconductivity as La2__-Ba_.CuO4_u with an orthorhombically

distorted I(2NiF4 structure and to demonstrate that the superconductivity was

a bulk phenomenon [35]. Corresponding to Table 3.1, the new high-T_ oxide

superconductors discovered since 1986 are listed in Table 3.2. Major discoveries
have been made in France, Japan, Switzerhmd, and the United States.
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Table 3.2: Superconducting oxides discovered after 1986

Compound Tc Discovery

(La2__Mx)CuO4;
M = Ba _ 30 K '86 J. G. Bednorz & K. A. Miiller[3]

M = Sr ,-_40 K '86 K. Kishio et al.[2]
40 K '87 R. J. Cava et a1.[99]

M = Ca ,,- 20 K '87 K. Kishio et al.[2]

YBa2CuaOz ,,_ 95 K '87 M. K. Wu et a1.[104]

LnBa2CuaOr ,_ 95 K '87 Various laboratories[122]

(La2__Na_)CuO4 ,-_ 20 K '87 J. T. Markert et al.[102]
Bi2Sr2CuO6 ,_ 22 K '87 C. Michel et a1.[123]

Bi2Sr2Ca_-lCu.,O2n+4 _ 110 K '88 H. Maeda et al.[ll]

TI2Ba2Ca_-ICu.,O2n+4 -_ 125 K '88 Z. Z. Sheng & A. M. Hermml[105]

(Ba1__K_)BiO3 ,-, 30 I': '88 R. J. Cava et a1.[124]

Nd2_x+yCe_SryCuO4 ,,- 20 K '89 J. Akimitsu et a1.[125]
RBa_Cn4Os ,,- 80 K '88 D. E. Morris et a1.[126]

Pb2Sr2(Ca, R)Cu3Os+_. -_ 77 K '88 R. J. Cava et a1.[127]

(Ln2_,Cex)CuO4 -,- 25 K '89 Y. Tokura ,:t al.[8]

(Ln2__Thx)CuO4 -_ 20 K '89 J. T. Markert & M. B. Maple[103]

Ln2CuO4-_-yF_ ,,- 25 K '89 A. C. W. P. James et a1.[128]

Nd2_x+yCe_BayCu:_Om--_. _ 30 I;. '89 H. Sawa et a1.[129]

T_ > 300 K? (TIP OF THE ICEBERG?)
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3.5 Japanese Research on high-Tc Oxide Su-

perconductors

Japan has an intense and broadly based national research program on high-T_

superconducting oxides that involves industrial, national and university labo-

ratories. At present, the program is predominantly experimental with a strong

emphasis on materials, which seems appropriate in view of the fact that re-

search on this complex and challenging problem is in an early phase. The

Japanese clearly recognized the importance of materials research for enhancing

their basic research program on the one hand, and the potential for eventual

commercialization of products based on high-T_ superconductors, on the other

hand. There are many industrial, national, and university laboratories with

excellent programs in the synthesis of polycrystalline and single crystal bulk,

thin film, and composite superconducting materials. Included in almost all

of these research efforts is the search for new superconducting materials, an

extremely important enterprise that appears to be more strongly emphasized

in Japan _han it is iri American 1,tboratories. Japanese researchers also seem

to be more willing to carry out systematic investigations of multicomponent

phase diagrams and complex processing methods in connection with the syn-

thesis of superconducting materials than their U.S. counterparts. Although
research and develop,_aent of superconducting materials at)pears to be an im-

portant national objective in Japan, competition between individual research

groups as well as industrial and university laboratories, in general, seems to

be quite intense. A new component that augments the traditional triumvirate
of industrial, national and university laboratories and illustrates the resolve

of the Japanese national effc_' on high temperature superconductivity is the

formation of ISTEC which has a primary laboratory in Tokyo and a subsidiary

laboratory in Nagoya (see Chapter 1). Japanese materials research on high-Tc

superconductivity has F,een very competitive on a worldwide scale. Some of

the highlights of Japanes(' materials research on high-To oxide superconductors
are summarized in this section.

3.5.1 La2_,M,CuO4_y (M = Ca, Sr, Ba, Na) Compounds

Evidence for superconductivity with an onset near 30 K was first reported by

Bednorz and Miiller in 1986 in the La-Ba-Cu-O system [3]. However, this work

was initially regarded with a certain amount of skepticism due to the long his-

tory of reports of superconductivity at high temperatures (well above 23 K, the

high Tc record !:old by the A15 compound NbaGe since 1973) in materials such

as CuC1, CdS2, etc., that were transient and/or irreproducible, or, in short,

could not bc exp¢,rimentally verified. Japanese researchers at the University of
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Tokyo provided the first convincing confirmation of the work of Bedllorz and

Miiller [3], by preparing single phase materials with relatively sharp resistive
superconducting transitions, demonstrating the Meissner effect, and determin-

ing the crystal structure [130]. In subsequent work, superconductivity was also

found to occur at ,-_20 K in the La2__Ca_CuO4_y system [2], and at ,,_ 40 K

in the La2__Sr_CuO4_y system [99,100,2]. Somewhat later, superconductiv-
ity was also discovered in the La2__Na_Cu04__ system [101,102]. Although

these materials have been supplanted by other oxides with yet higher critical

temperatures as candidates for technological applications, the research on the

lanthanum cuprate materials has yielded some of the basic characteristics of the

high-To oxide superconductors (see Chapter 2). The substitution of divalent

Ca, Sr, or Ba or monovalent Na for La in La_CuO4_y dopes the CuO2 planes
with mobile holes. These holes destroy the uiltiferromagnetic ordering of the

Cu 2+ ions that occurs at a N_el temperature TN ,_ 500 K in the insulating

phase and convert the material into a superconducting metal with a maximum

Tc at x _ 0.15 for alkaline earth solutes. Work on these materials proceeded at

a feverish pace during 1987, and Japanese researchers have made many impor-

tant contributions to the characterization of the magnetic and superconducting

properties of the oxide superconductors by means of transport, magnetic, and

thermal measurements, neutron scattering [54], etc., in addition to having in-

dependently discovered [2] superconductivity in Ca and St-doped La2CuO4__.
The highest quality single crystals that were used in the neutron scattering

experiments carried out at Brookhaven National Laboratory in the U.S. were

made in Japan where there are several excellent programs [27,29,30] for growing

single crystal specimens of high-To superconducting materials, yielding crystals

of some high-T_ materials that are superior to those available in the U.S.

3.5.2 RBa2Cu3OT__ (R = Rare Earth) Compounds

Following the discovery in the U.S. by Wu et al.[104] of superconductivity near

92 K in the compound YBa2Cu3OT_6, various laboratories in Japan and the

U.S. independently and nearly simultaneously reported superconductivity ncar

92 K in the lanthanide (Ln) analogues LnBa2CuaOT__ of YBa2CuaO__6 for all

of the Ln elements except for Ce, Pr, Pro, and Tb [131]. Research on the

RBa2Cu3OT-6 comI)ounds progressed at an especially rapid rate throughout

the latter half of 1987 and all of 1988. During this period, Japanese and U.S.

efforts were comparable in terms of level of activity and research quality and ac-

complishments. On the m_tterials front, Japanese researchers c_rried out some

of the best work oa tbc effect of transition metal substitutions on the super-

conductivity of YBa2Cua()T_o [132], and the growth of single crystal specimens

of RBa2Cua()T__ compounds [133,134]. Some of the highest quality specimens
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of LaBa2CujOT-6, the most difficult of the RBa2Cu3OT__ compounds to pre-!:
: pare, have been fabricated by Japanese researchers [135,136]. Presently, the

i RBa2Cu3OT-6 compounds are being actively investigated in Japan, especially
with respect to the preparation of high quality polycrystalline and single crys-

tal bulk samples as well as thin film specimens. Researchers in Japan are also

actively pursuing the measurement of superconducting phenomena such as gi-

ant flux creep, oxygen disorder effects on To, upper critical magnetic fields He2,
and critical current densities Jc.

3.5.3 Bi2Sr2Ca._lCunO-.n+4 Compounds

Superconductivity with Tc _ 22 K in the compound Bi2Sr2CuOe was discovered

by Michel et al. in France in 1987 [123]. Independently, bulk superconductivity
with Tc _ 8 K was observed in the Bi-Sr-Cu-O system by Akimitst, et al.[125].

Shortly thereafter, Maeda et al.[ll] in Japan reported superconductivity with

onset temperatures near 110 K in the Bi-Sr-Ca-Cu-O system. Several supercon-

dttcting phases with the compositions Bi2Sr2Can-lCu,O2,+4 have been identi-

fied with Tc's of-._ 22 K, _ 80 If., and ,_ 110 If. for n = 1, 2, and 3. Recently,

Japanese researchers have succeeded in growing large single crystals of various

compounds in the Bi-Sr-Ca-Cu-O system (e.g., Bi2.0(Bi0.2Srl.sCal.0)Cu2.0Os;

T_ _92 K [137]). Various chemical substitution experiments have been carried

out; e.g., (1) with increasing Y concentration x in the Bi_Sr2Ca1_xYxCu_Os+6

system, superconductivity is suppressed and vanishes at x _ 0,5, while an

antiferromagnetic insulating phase occurs for 0.5 < x < 1 [138], similar to
what happens in the La2_xMxCuO4_y and RBa2CujOr__ compounds discussed

above; (2) there appears to be an optimal hole concentration where T_ is a

maximum in the Bi2Sr2Cal_,MxCu2Os+6 (M = Lu, La, Na, K) system [139];

and (3) substitution of F in the Bi-Sr-Ca-Cu-O system increases the volume of

the "243" phase (at the expense of the "232" phase), raises T_ to 113 K, and
results in the intergrowth of layers which contain different numbers of CuO2

planes separating the BiO double layers [37].

An example where careful, systematic materials substitution work has led to

new physics is illustrated in Fig. 3.1. This figure shows a logarithmic plot of the

electrical resistivity versus temperature of Bi2Sr2Cal-,LuxCu2Os+_ for wtrious

values of x ranging from 0 to I [139]. Of significance here is the dramatic change

from superconducting to semiconducting behavior as .r. increases from 0.5 to

0.6, without showing a metallic non-superconducting phase. A similar effect

was previously reported for the Bi2Sr2Cal-xCu2Os+_ system [138], and has also
been reported by Koike et al. [139] for other hole doping substitutions. High

critical current densities J¢ _ 106 A/cm 2 at 77 N. (H = 0) have been obserw_d

in thin films of Bi2Sr_Ca2CujOl0 [140]. Values of Jc -_ 104 A/cm 2 _tt 77 K
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Figure 3.1: Logarithmic plot of th_ rh'ct,'ical resistivity w_rsus temp_'ratur_' .f
I?i2Sr_Ca1__Lu_Cu20_+6 for various values of :r ranging from 0 to 1. Thr tram
sition from a supcrcoaductiug metal to it aonsuperc¢)nducting srmicoIlductor
as x i11creasesfrom 0 to 1 is evideat ia the data below -,- 100 K. After Y. K_ik_'
et al. [139].
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which decrease by a factor of 10 in a field of 1 tesla have been observed in Ag-

sheathed grain-aligned wires of the Tc ",, 1:l0 K phase in the Bi-Pb-Sr-Ca-Cu-O

system [15].

3.5.4 TIBa2Can_]Cu.O .+3 and Tl2Ba2Ca.-iCu.O2n+4 Com-
pounds

Superconductivity in the TI-Ba-Ca-Ca-O system was discovered by Sheng and

Hermann [105] in the U.S. in 1988 and, independently, by Kondoh et ai.[141] in
Japan. Several superconducting phases were identified shortly thereafter which

have the compositions TI2Ba2Ca,_ICu,O2,+4 with Tc values of 90 K, 110 K,

arid 125 K, for n - I, 2, and 3 [142]. These compounds are characterized
by double TIO layers, separated by n CuO2 layers which are, in turn, sepa-

rated by CaO or BaO layers. Single TIO layer compounds with the formula

TIBa2Ca__] Cu, O2,+a have been discovered by groups in Japan[32,33], the U.S.

[143,144,145], and other countries [146,147]. Recently, several Japanese groups
have succeeded in preparing single and double TIO layer compounds separated

by n CuO2 layers with n values up to 7. It has been found that T_ exhibits

a maximum as a function of n at n = 4 for the single TIO layer compounds

and at n = 3 Ibr the double layer compounds (NRIM, Sumitomo, Tohoku Uni-

versity [12]). Shown in Fig. 3.2 are the crystal structures of single TIO layer
TIBa2Ca,,_ICu,,O2n+_ compounds for n = 2,3,4,5 along with plo_s cf the a-

axis lattice constants and T¢ versus number of CuO2 layers per unit cell [12,32].

Superconducting thin fihns of TI_Pa2CaCu20_ on MgO substrates have been

prepared with values of J ,,_ 106 A/cm 2 at 77 K (H = 0) [148]. A,iso_ropy of

H_2(T) and the activation energy U0 of the resistive transition curves has beeu

investigated on a single crystal in the T1-Ba-Ca-Cu-O system with 2'_ = 106 K

[149]. Relatively large single crystals of compounds in the T1-Ba-Ca-Cu-O sys-
tem with dimensions of 2 × 2 x 0.1 mm 2 a:ld _. _ 110 K have been pret)arcd
at Sumitomo Electric.

3.5.5 Ln_ .M,.CuO4_y (Ln = Pr, Nd, Sin, Eu; M = Ce,
Th; x Compounds

One of the m()st interesting recent (levelol)mcmts is the discovery of th,,' electron-

dope(l SUl)erconductors Ln___C_,_.Cu()4_y (Lu = Pr, Nd, Sm; a' _ 0.15) reported

by J_t)anes( ' researchers [8]. Shortly thereafter, four more r('lated el(,ctron-

doped materials were found 1)y groul)s in the U.S.: Eu.,__xCexCvO4_y (x _ 0.15)

[150], Ln.2_._ThxCuO4_y (Ln = PL Nd; a: ,_ 0.15)[103,150], and Nd,,CuOa___yF._

[128]. These materials are of particular interest because the charge carriers

r('sl)onsible fi)r th(' SUlWrcon(hwtivity al)p('ar to b(' electrons, rather than hoh',_,
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that reside in the CuO2 planes. The significance of the discovery of electron-

doped high-T_ copper oxide superconductors may be several fold:

1. There appears to be a qualitative symmetry between doping the CuO2
planes with electrons and holes; with increasing electron or hole concen-

tration, the Cu 2+ antiferromagnetism is suppressed, the materials con-

tinuously evolve from insulating to metallic, and superconductivity is
induced.

2. The existence of electron-doped superconductors may place new con-

straints on the development of a viable theory of high-T_ superconduc-

tivity.

3. Electron-doping of CuO2 planes may represent a new route to high-T_

superconductivity which may even result in the diseovely of new oxide

compounds with superior superconducting properties that are more suit-

able for technological applications than the materials now on hand.

Based upon these findings, it is possible to construct a generic phase dia-

gram for the copper oxides which emphasizes the symmetry between electron

and hole doping (see Fig. 3.3). Shown in the lower part of Fig. 3.3 are the

schematic density of states curves corresponding to the vario_,_ regions of the

phase diagram.

The Ln2CuO4_u parent compounds crystallize in a tetragonal "T'-phase"

structure containing CuO2 planes in which the copper ions ,_-e surrounded by

a square planar arrangement of oxygen ions, in contrast to ,he La.2CuO4__

parent compound which forms an orthorhombic "T-ph,'_e" structure at low

temperatures (Lelow -_500 K) containing CuO2 planes in which copper ions

are surrounded by an octahedral arrangement of oxygen ions. The T'-phase

and T-phase crystal structures are shown in Fig. 3.4 along with the related T'-

phase [8]. Whereas the CuO2 planes in the T-phase can be doped with holes,
but not electrons, the converse is true for the T'-phase, a result that seems to

be associated with the missing apical oxygen ions in the T'-phase structure.
However, it has not yet been established with certainty that the charge carri-

ers involved in the superconductivity actually are electrons. Hall effect [151]

and x-ray absorption spectroscopy [152,153] measurements on superconducting

Nd2_xCe_CuO4 compounds have been interpreted in terms of electron doping

of the CuO_ plm_es, whereas electron energy loss spectroscopy experiments on

this system indicate that there are holes at the oxygen sites [154].
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GENERIC PHASE DIAGRAM FOR CU-OXIDES
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Figure 3.3: Generic phase dingram fin"copper oxides shown in th¢' upper p.rt
of the figure. The schematic density of states curves for various regions in the
phase diagram are shown in the lowe.'"part of the figure.
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Figure 3.4: Crystal structures of various high-To phases: (a) Nd2._,CexCuO4

(T'-phase), (b) La2_,Sr,CuO,l (T-phase) and (c) Nd2-,-yCe,SryCuO,I
(T" -phase). After Y. Tokura, H. Takagi, and S. Uchida [8]. i
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3.6 Organic Superconductors

A substantial amount of effort on organic superconductors is being expended

in Japan where there may be as many as twenty research groups (,-, 100 re-
searchers), in contrast with about five in the U.S. (_ 25 researchers), working

on this subject. The research efforts in Japan are focused on synthesis, as well

as the solid state physics and chemistry of organic superconductors. The inter-

est in organic superconductors appears to be driven by the quest for higher To's,
a possibility that is suggested by the rapid rate of increase of the maximum

value of Tc of the organic superconductors with time, which is even greater

than that observed for oxides, although the maximum T, of the organic su-

perconductors is presently only about 11 K. The organic superconductor with

the maximum T¢ of -,, 11 K, the compound (BEDT - TTF)2Cu(NCS)2, was

discovered in Japan in 1988 by Urayama et a1.[155]. The normalized electri-

cal resistance R(T)/R(273K) versus temperature and the crystal structure at

104 K of the organic superconductors (BEDT-TTF)2Cu(NCS)2 are shown in

Fig. 3.5 [155]. It is not inconceivable that the knowledge gained from research
on the oxide superconductors may someday be used to "engineer" organic com-

pounds in which the highest values of T_ will eventually be obtained. Japanese

researchers are in an excellent position to capitalize on this possibility.

Japanese institt_tions in which research oi_ organic superconductors is presently

being conducted include:

• Synthesis

- ISSP, University of Tokyo

- Inst. for Molecular Science, Okazaki

- Dept. Synthetic Chem., Osaka University

- ISTEC, Tokyo and Nagoya

- Sumitomo Electric

• Solid State Physics and Chemistry

- Eleetrotechnical Laboratories;

- Dept. Appl. Science, University of Tokyo;

- Dept. Physics, Gakuslmin University;

- Dept. Physics, Kyoto University;

- Inst. fox"Molecuhu" Science, Okazaki;

- Dept. Chem. and Dept. Physics, Toho University;
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Figure 3.5: Normalized plot of electrical resistance R(T)/R(273K) versus tem-
perature and the crystal structure at 104K of the organic superconducting
compound (BEDT-TTF)2Cu(NCS)2. After H. Urayama et al. [155].
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- Dept. Chem., Tokyo Metropolitan University;

- Institute for Materials Research, Tohoku University;

- Dept. Chem., University of Tokyo;

- ISSP, University of Tokyo;

- Dept. Chem., Tokyo Institute of Technology;

- ISTEC, Tokyo;

- Sumitomo Electric.

3.7 Heavy Fermion Superconductors

The so-called "heavy electron" (or "heavy fermion" ) superconductors are com-

pounds of Ce and U which are superconducting at temperatures T < 1 K and
have electron effective masses as high as severa) hundred times the mass of

the free electron. These heavy masses are inferred from the enormous elec-

tronic specific heat coefficients that attain values as high as ,'- 1 J/mole-K e

[156]. The heavy electron superconductors presently known include CeCu2Si2,
UBel3, UPt3, and URu2Si2. As stated in §3.2, this field was very active prior
to 1986 both in the U.S. and Japan, but came to axi abrupt halt with the ad-

vent of high Tc superconductivity. Although there is renewed interest in heavy

fermion superconductors in the U.S., there presently appears to be only a low
level of research on this subject in Japan (prima.rily at Tohoku, Tsukuba, and

Hiroshima Universities)

3.8 Concluding Remarks

The JTEC Panel concluded that, overall, Japan places a substantially larger

emphasis than the U.S. on materials research in their superconductivity l)ro -

gram. A wide spread, but uncoordinated, search for new superconducting
materials is underway, involving industrial, national and university lal)orat.o-

ries. The Japanese have an extraordinarily strong research program on organic

superconductors. Inter-laboratory collaborations in Japan in the area of su-

perconducting materials research are still relatively weak, but are impr(wing

rapidly. The Japanese laboratories we visited are generally well equipped fiw

research in superconductivity. Especially iml)ressive has been the success of

Japanese researchers in growing large, high quality single crystals which have

been the object of basic research in both Japan and the U.S. Ma.terials re-

searchers are l'ighly appreciated for their efforts in providing high qualit.y i)o15.-

crystalline, singh', crystal, and thin fihn specimens to other researchers aml to
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other experimental groups for collaborative efforts in characterizing the phys-

ical properties of these materials and in addressing important physical issues

pertaining to the origin and nature of high-To superconductivity.
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Chapter 4

Large Scale Applications of
Superconductivity

John K. Hulm

4.1 Introduction

Large scale applications of superconductivity became feasible after 1961, with
advances in liquid helium refrigeration technology and the discovery of high
current, high field superconductors which led to the development of zero re-
sistance high field magnet_. These advances were made initially in the United
States (Collins liquefier [157], high Jc materials [158]), although important sci-
entific contributions were made in Great Britain (coherence concept [159]) and
the USSR (Glag theory [160], ,-ortices[160]).

The technology of high field superconducting magnets and their conduc-
tor materials made spectacular progress in the U.S. in the 1960's with the
development of niobiunl-titanium and Nb3Sn conductors in filamentary form,
including stabilized conductors with copper and aluminum matrices. However,
major contributions in the design of stable conductors were made in the U.K.
(filaments [161]) and in Japan (diffusion process for AI5 alloys [162]) in the
late 1960's.

Japanese laboratories got off to a rather slow start i, superconducting high
field magnet technology, but by 1970 the three major Japanese electrical ma-
chinery firms and the cable and wire suppliers were rapidly coming up to par
with the U.S. in both conductors and in magnet technology. Similar progrcss
was achieved in Europe and in the USSR by the middle 1970's.

In the remainder of this chapter we will compare the present (1989) sta-
tus of large scale, l,)w-T_ superconductor tcchnology in Japan with that in the i

]

5S

1990013093-077



United States. The structure of the superconductivity il_dustry and the na-

tional laboratories in both Japan and the U.S. will be discussed, together with

an outline of ,najor projects, materials development and the status of high field
magnet laboratories in both countries.

While superconducting magnets constitute the main branch of this technol-

ogy, another developing area is the direct use of the zero resistance property of

superconductors in low magnetic field applications such as transmission lines

and microwave cavities. The U.S. has led the world in power transmission ex-

periments (Brookhaven [163]), but the technology has not yet found favor in

the marketplace and the U.S. development has stopped. Large superconducting

microwave cavities, on the other hand, have proved to be superior to normal

metal cavities as regards energy loss, and superconducting cavities find grow-

ing use in linear accelerator technology. Advanced accelerators utilize multiple

cavity resonators, not only for high energy physics and nuclear physics but

also for medical applications and are likely to be important for other uses, e.g.,

free electron lasers. Cavities are presently made from niobium metal (T_ --_9I()

cooled to 4.2K and must be free, of surface imperfections and stress to yield high

Q values. With solid Nb superconducting cavities, Q values around 109 have
been achieved, compared to about 10_ for copper cavities. Credit for initial

success with this technology goes to West Germany [164], but Japan and the
U.S. have both utilized such cavities in LINACS and both countries have ,nade

notable improvements in the technology recently [165,166].

While materials such as Nb, Nb-Ti and Nb3Sn presently dominate the large

scale applications, grcat interest exists in replacing them by the recently disc,w-

ered oxide superconductors, cooled by liquid nitrogen. If equivalent electrical,

magnetic and mechanical performance can be achieved with the new oxides,

they will almost certainly replace the low-T_ superconductors because of the

reduction in refrigeration and cryostat costs. Unfortunately rather severe prob-

lems exist in achi_.ving adequate critical current density in high magnetic fields

for the high-T_ oxides. A technological race between the U.S., Japan and Eu-

rope is now in progress on this problem. The outcome, if successfill, will give

the winner a considerable edge in more economic large scale applications of
superconductors. The critical current problem is discussed in more detail in

§3.3 of this report.

4.2 Administration of Large Scale Systems in

Japan and the U.S.

Japanese progress in developing large scale systelns utilizing low tenap('rature

superconductors has been steady and hnpressive over the past qua.rt_w ten-
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tury. The key elements of this progress have been a well-integrated partnership

between the following organizations:

• A group of government departments, including the Ministry of Interna-

tional Trade and Industry (MITI), the Science and Technology Agency

(STA), the Ministry of Education (Monbusho) and the Japanese National i

Railways (JR). In close consultation with private industry, these govern-

ment agencies originate, fund and provide overall coordination of ad-

_. vanced development projects, many of which utilize superconductors as

i a key sub-technology (see Table 4.1).

i; • A group of government laboratories operated by the above-mentioned

departments which carry out a variety of functions including the develop-

ment of new materials, testing of new systems, and technical coordination

of projects, l_or superconductivity these national laboratories (and their

sponsors) include-

- National Laboratory for High Energy Physics (Monbusho)

- Electro-Technical Laboratory (MITI)
i

- National Research Institute for Metals (STA) i

- National Institute for Research on Inorganic Materials (STA) i

- Japan Atomic Energy Research Institute (STA)

- Railway Technical Research Institute (JR)

• Three large electrical companies (the "Big Three"), each with annual sales
in the vicinity of $20 billion, Hitachi, Mitsubishi Electric and Toshiba, are.

the main instruments of superconducting systems development in Japan.

These major corporations now have a quarter century of experience in

R&D on applied superconductivity and have supplied a large variety of

development magnets plus cryogenic systems, including helium refrige,'a-

tots, to government laboratories (see Table 4.1).

It is the expressed policy of the various government agencies and labo-

ratories to rely on private industry to do most of the engineering and

m_'mufacturing of superconducting systems. There appears to be fierc(-
competition between the supl)liers to get these jobs (they regard them as

technological "plums" and these .Japanese companies are not detc,'red by

the poor prospects for high lllalttlfltcturing vOlUllle (ill lllOSt ca,ses). They

are looking t,o uti!iz(, this n('wly acquired technology in the long-range ,1
future. i

One area of low temt)erature Sul)ercondu,,ting magnet tcchnoh_gy has

gone beyond the }2&D stage to (,o,nmerciM dev('lopment, na,n(,ly magn(,ts

6O
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Table 4.1: Government sponsored large scale superconductivity superconduc-

tivity development in Japan.

Agency Co-ordinating Superconducting
National Laboratory Applications

Ministry of High Energy Physics Dipoles, Quadrupoles,
Education (KEK) Detectors,

(Monbusho) Microwave Cavities

Ministry of Trade Electrotechnical Josephson Junction

and Industry Laboratory Circuits, Generators

(MITI) (ETL) (Super GM')

Japan Railways Railway Technical Maglev Train"

(JR) Research Institute (RTRI)

Science & Japan Atomic Euergy Fusion Magnets

Technology Res. Inst. (JAERI)

(STA)

Natl. Res. Inst. Metals Advanced Supelconducting

(NRIM) Materials

Natl. Inst. Res. Inorg. High-To Materials

Matls. (NIRIM)

" Major Projects
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Figure 4.1: MRI whole body scanner with supcrcomhwtmg magnet (l'oshiba).

for medical use in ma.gnt, tic resonance iinaging (MRI). All three major
electrical companies have mc,dical equipment divisions and through these

outlets they are supplying MRI systems to Japanese hospitals. Taese

systems are mainly constructed with large bore, high homogeneity, 2

tesla Sal)ercnndn('tiag solenoids.

In a world-wide market of about 1,300 MRI systems sold to date [167},

Japan apt)ears to have appr()ximately 200 systems in service. As far as we

could det('rmine in informal dis('ussions, these aI)pcar to bc split equally

between Hitachi, Mitsnbi:hi and Toshiba. A jointly owned v(ulture I),.:-

tween Furukawa and Oxf()rd Instrunl_u_t_ was said to have :t few l)erceat

of this magnet, market (as a (,Oml)(meat supplier). M_u'keting (:onll)lete

systems seems to t)(, it key r('(luirem_'at f(_r 1)usim,ss success (see ,'ig. 4.1 ).

A l)ot('ntially iml)ortaut future al)l)licati(m ,)f SUl)(,rcondu('tillg lngh field

m_gm'ts li_'s in the gem,ration of shcn't wavrh'ngth x radiation for sulnni-
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Table 4.2: Rough estimate of the numbers of full time researchers at the leading

industrial l_boratories.t

Low-To High-To
Hitachi 10 30

Mitsubishi 30 20

T_3shiba 25 25

Sumitomo 4 21

tThe_e numbers do not include engineers outside of R&D. In the case of Hi-
tachi, the numbers in the table refer to the Hitachi Research Laboratory and

there are about 30 additional researchers at Kokubunji working on supercor,-

ductivity.

cron semiconductor integrated circuit manufacture. ,,q:,,cbrotron orbital

radiation (SOR) for this purpose is generated by a com:_,_ct a_;celerator
using high magnetic fields for beam bending. Hitachi has con,',tracted

such a machine for NTT (see §4.3 for reference to the magnet for this

machine).

• There are at least seven active suppliers of superconductor wires and
cables to the various institutional development projects. Each of the

electrical companies has its own captive materials supplier, while in ad-

dition there are several independent superconducting cable and materials

suppliers, who, despite an order of magnitude sales lower than the "Big

3" electrical companies, have been aggressive developers of new low tem-

perature (< 25K) s_'.perconductors. These include: Sumitomo Electric,

Furukawa Electric, Fujikura and Kobe Steel. Sumitomo and Furukawa

are broad-based advanced materials suppliers who strongly espouse the

philosophy that the future of technology is he_v,ly dependent on mate-

rials R&D, They are active in the mru'keti1:g of products such as opti(:d

fibers, gallium arsenide and other advanced materials. The development,

program by Smnitomo E!,,ctric was found to be particularly imim'ssive

for high temperature (high-T¢) sutmrconducting oxides.

Rough estimates of the numbers of researchers engaged in s,q)crconductivity re-
search at several leading indu::trial laboratorios in the superconductor industry
are shown in Table 4.2.

The U.S. development progrmn fi)r large scale systems lmsed upon low T,.

superconductors is broadly similar to that of Japan in th,tt most of the, (1('-
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Table 4.3: Government sponsored large scale superconductivity superconduc-

tivity develov.,,ent in the U.S.

Agency National Supercond ucting
Laboratory Apl=lications

Eepartment of High Energy Physics Dipoles, Quadrupoles,

Energy Fermi Lao, Brookhaven Detectors, Cavities,
SLAC, Cornell, SSC CEBAF, RHIC, SSC"

Energy Technology Fusion

Brookhaven, Oak Ridge Materials, Conductors
LASL, Sandia, LLL, Low-To, High-To materials

Argonne, LBL, etc.

Department of Wright-Patterson DARPA Projects
Defense Naval Research Lab Materia" •

NSRDL Electronics

Lincoln Labs, etc. Dower Devices

SDI O_ce Superconducting Magnetic

Energy Storage"

Department of NIST .Ic, U &

Commerce Josephson Junction Stan-
de rds

" .Majol Projects

m_md for sup_ rconducting magnets comes from govermnent agencies engaged

in advanced systems or teclmology development progrmns in which SUl)erc(m-

, ductors arc merely a component. However, there are subtle :!ifferences between

practices in the two countries which are worthy of comment.

• In the U.S.. :he principal source of fimding for large scale superconducting

deveiopment projects originates with two departnwnts, DOE and DOD

(see Table 4.3).

• The U.S. national laboratories, maiuly flmded through DOE, have served

as the main instr_ments for the mounting of SUlmrconductiug projects in

high energy physics, fusion, n:agm't.ohydr_Mynamic:_ (MHD), power t.ra,.is-
miss;:a, etc. In some cases the cngine,'riug, desigu, and manufacturing of

nw,guet.s is let out m industry, whih' iu other cases the en_;iue('ring work
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and even limited production is carried out at the national laboratory.
Some of these U.S. national laboratories have assembled large engineer-
ing teams to carry out this work. This is contrary to the practice in
both Japan and Western Europe, and effecti'.'ely weakens the experience
base of U.S. companies. At the same time it has to be remarked that in
contrast to the enthusiasm of Japanese industries for such development
projects, many U.S. companies seem reluctant to tackle superconductor
technology, especially for low-To superconductors, which these companies
view as a narrow niche, low production opportunity.

• The industrial involvement in large scale superconducting projects is not
restricted to U.S. l:eavy electrical companies such as General Electric
and Westinghouse, but has also involved Aerospace companies, notably
General Dynamics. At the same time, an array of smaller corporations in
the less than $200 million annual sales category have been attracted to or
have been start-ups in the low-To, large scale superconductor applications
area due to the lack of interest shown by larger corporations. Examples
include General Atomics and Intermagnetics General.

• In great contrast to J,_pan, the superconducting materials suppliers in the
U.S. are independent of the heavy electrical and aerospace giants. These
relatively small superconductivity companies include Intermagnetics Gen-
eral, Oxford-Airco (British owned), Wah Chang-Teledyne and Supercon.
It seems unlikely theft the U.S. competitive position in superconducting
technology has suffered as a result of this small company structure -
indeed the U.S. suppliers have been able to adequately meet the mar-
ket ,_.eedfor < 10T sophisticated superconductors, mostly Nb-Ti elloys.
However, after talking to the Japanese materials suppliers, we concluded
i:hat th('y are ahead of the U.S. in the development of advanced A15 aml t

Chcvrcl phase conductors for the high magnetic field range, >15T (sec
§4.8.2). The market for such conductors is presently quite small, but
apparently th,.• Japan,-se arc taking a longer rmlge view, buttressed by
th(, al_ility of their materials companies to support such R&D on account
of their larger size and through .active encouragement from govermnent
lal)oratori¢'s such as NI'{IM.

4.3 Recent Large Scale Developments in ?apan
and the U.S.

As we nay,' already stat,.d, the tcclmological experience of the Japanese "Big
Thr_'_'" vl_'ctrical compani_'s in SUl)ercrmducting magm.ts has been steadily
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t
strengthened by a continuous stream of development projects rising from the

government agencies and laboratories (see §4.2). A notable feature of these

projects is that many of them are esse_;tially long range, long time cycle activ-

ities, not subject to violent oscillations of government policy in areas such as

energy, transportation, research, etc.

In our view, t.he Japanese are slow to start major new projects and they

i' spend a great deal of time on getting a consensus between government and

industry before they commit to a major new technology. However, once com-

mitted, the budget is set for many years and only technological or economic
failure will stop the project. Of course, under the present Japanese rapid eco-

nomic growth, it is relatively easy for the government to maintain and expand

its commitment to development projects under Monbusho, STA, MITI, etc.
However, even for the Japan National Railways (now JR)_ which has recently

been through what amounted to bankruptcy (to the extent that this is possible

for a national company), nevertheless, JR has maintained a large, long-term
commitment to R&D on the magnetic levitation (Maglev) of trains.

The present United States situation is, of course, very different from that of

Japan. The poor balance of trade and the national budget deficit, high welfare
costs and military spending have all combined to make long-range budgeting for

major development project._ more or less impossible. Also, little or no consensus

exists between govermnent and il:dustry on long-range technological policy.
One p_ece of evidence for our inability to sustain long-range commitments i_s

the long list of "stopped" projects involving large scale use of superconductors.

This includes the Isabel accelerator (Brookhaven), abemdoned after 4 miles of

tunnel were constructed and a huge helium liquefier was installed, the mirror

filsion test facility (Livermore) abandoned after the construction of a very large

superconducting magnet, the superconducting transmission line (Brookhaven)

a technological success rejected by the utility industry, and the superconducting

generator (EPRI-Westinghouse) abandoned after partial rotor construction, for
financial reasons.

It seems obvious that the U.S. has much to learn from the Japanese in

project plamfing and in gow,rmnent--industry cooperation. This point has been

well empha._.ized in many other American reports on Japan [168], so we will not

belabor it hcrc. However, it is quite remarkable that large-scale superconduct-

ing; t(,chnology offers so many cxanlplcs of project faihu'e in the United States,

and ahnost none in Japan.

We ha.ve ah'c'ady noted the broad experience of major ,lapanese electrical

c(mlI)anies in superconducting projects. This is illustrated for Hitachi Ltd. in
TaMe 4.4, where are tabulated repr,_sentatiw', magnets deliw_'red in the 80's,

the majority f(n" (levelolmwnt work. In sore(' cas_s more than one system was

d('liv('red for a specific al)plicati:)n. Most of these mngnets Ol)era.te at 4.2K.
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Table 4.4: Characteristics of recent Hitachi large scale magnets.

Max Bore:[: Year

i Application Customer Type Field, T Size, cm Delivered

Maglev JR Racetrack 5.1 300 x 80 1980
Fusion JAERI Tokomak 8.0 300 x 400 1984

LCTt Section

Fusion Univ. Full 11.0 160 1986

Kyushu Tokomak

! Gyrotron JAERI 60 GHz 2.5 10 1984
20O kW

High Energy KEK Detecto:" 1.5 286 1985
Physics Fermilab Coil

High Energy KEK Beam 10.4 - 1983

Physics Bending

MRI Hitachi High Homo. 0.5 100 1984
Medical Solenoid

High Univ. Solenoid 15.5 10 1985

Field Kyuslm

High Field NRIM Solenoid 18.0 18 1984
Generator IVIITI Saddle 6.0 - 1983

Synchrotron NTT Beam -- 1988
Radiation Bending

:_For non-circular bores, two figures are given

f LCT denotes large coil task
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For our JTEC study a very similar list with minor variations, was prepared i

for Mitsubishi and Toshiba, but these lists are not shown here. It appears

that the various agency customers are evenhanded in distributing development

experience amongst the various companies, althou_,h the procurement activity

is believed to be quite competitive and probably requires some investment by

the companies themselves - particularly in areas of existing company business

such as electric generators.

We assert that no single company in the United States has the breadth of

magnet development experience represented by Table 4.4. General Dynamics,

General Electric and Westinghouse have produced magnets in a few areas of

Table 4.4, while General Atomics and Internlagnetics General have worked in
other areas. In several instances the U.S. national laboratories have developed

their own magnets or sought bids for materials and magnets from overseas.

As noted earlier, this practice weakens the experience base of U.S. private

in(lust ry, but industry can also bc blamed for lack of aggressive action to build

this experience base.

It is not possible or desirable fi)r us to discuss every project in Table 4.4 in

detail, but we will outline two ,lal)anese ,tevelopment projects which are quite

large in scope and involve each of the "Big 3" el¢,ctrical comlmnics. These:

are tke Magnetic Levitation (Maglev) Train project and the Superconducting i

Generator project.

4.4 Maglev Trains

Seventeen years ago the .]apancse National Railways (now JR.), through its

Railway Technical R.esearch Institute (RTRI) in Tokyo, began an aggressive

program to develop sui)ercon(htcting magnetic levitation of high speed I)aSSem

ger trains. This followe(l clos¢'ly on t.lie construction of a comph'tely new steel

rail passenger line between Tokyo and Osaka, the Shinkansen, which operates

regularly at about 200 km/hr and carries over 100,000 passengers per day. The

Fr('nch TGV, operating between Palls and Lyon on a brand new steel track

I)cd for most of this ram, has achieved regular operating spced,_ in tlw 250+

km/hr ran_i" since 1980. It is tl:e ,lirl intention to enhan(:c the Shinkanscn to

tlw 250 and 30(1 km/hr range as soon as imssiblc.

Railway engh_('ers doubt tlw capacity of steel rail v(,hicles to Olmrat_' much

abm'c 300 kxn/hr, but it. is wc!l established that with a non-contact maNta'tic

,'ushion, xnlt('h higher SlWeds are lmssil_h', The RTIII has lmilt a 7 kilometer t,,st

track on the coast of Kyuslm Island, north of Miyazaki. S(,vcx'al ¢.xp¢,rim,-ntai

vehicles !:avl, l)c_,n (levcl,._Wd including .ML100 and MLS00, which olwrat,'d on
an inxortcd T (centlal lwam) _;'fi&'was", and MLU001 and MLU002 on a U-
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Figure 4.2: Magnetic levitation unit MLU002 (.IR/RTRI)

shaped guidewa.y, more like a standard raih'oad track, which is now preferred

(see Pig. 4.2). Speeds of slightly over 500 km/hr have been achieved in test
rams with ML500.

The MLU002 [28] can carry about 30 passengers and is mounted on two

levitation bogies, one constnwted by Mitsubishi and the other by Toshiba..

Each bogie carries six superconducting magnets which are racetrack shaped

dipoles mounted with the main field axis horizontal tmaximum field 5.1 tesla),

plus two refi'igerators which supply liquid helium t.o the six coils. The magnets
' areoI)erated in persistent _no(h' (no inlmt power) when iu service (see Fig. 4.3).

Levitation is accomplished bv a ,_,riesof c,osed loop coils of normal mat.erial

I (copp_'r or almnin,ml) l)laced atregular intervals alon_; the track bed below each

sich. c_f the car. "fh,' fi_'hl of the' on-lmard magnets induces eddy currents in the

normal coils (m the track b_.d and lm)vi'h's full levitation (10 cm) at SlW_'ds

above' 100 kin/hr. Rul_ber-tir_'d wheels at,' provided fiw landing at low speeds.

Horizontal guidance and vehicle ln'olmlsion is provided by a series of normal

coils plac('d w'rtieally at regular intervals along _'ach side of the guideway.
The field of the on-board ._utwrcomhwting ,nagnets induces eddy currents in

the guidance coils, inm'iding a r_,._toring fiw('_'for any sideways motion of the

car. The Im_lmlsion system is a linear synchronous mot_r, in which variabh,

t'requ_'m'y, a-phase power causes a magnetic lmle to move along the vertical
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Refrigerator

Support

I Superconducting coil

Figure 4.3: Refrigerator and three superconducting coils mounted o11each side

of bogie, MLU£.2 (RTRI).

normal coils of the guideway, and this pole moves the car by interaction with

the superconducting magpets (see Fig. 4.4).

A great deal of experience has now been accumulated on the operation of the

superconducting magnets and the various refrigerator systems which have been

tested on the bogies. The JR. engineers gave us a great deal of information on

the detailed performance of the systein. In a visit to [_TRI, further discussions

occurred on the engineering problems which lie in the path of constructing a

full passenger line like the Shinkansen. These include electromagnetic drag at

low speeds, how to get power on the cars for lighting, air conditioning, etc. and

determination of 'ae clearance required in turmels for a vehicle moving at 500

km/hr.

At present JR is planning a.n extended test track of 50 km length. Possible
sites considered for this test track at the time of the JTEC visit included an

extension of the Kyushu test site, a possible airport-city link on the ishmd of

Hokkaido, and a site west of Tokyo which would ultimately form part of a new

line fi'om Tokyo to Osaka. The RTRI group seemed to favor the last-mentioned

proposal a.s the most realistic approach to a new high traffic density sys*,em,

but they ,'enmrked that _her(' was ,nuch l)olitical pressm'e ;or the firs_ two

sites. Tlw discussion retain(led me of the site selection process for the SSC!

Subseqlu:nt to our visit, the govormnent selected a. 50 km route witl,in the

Yamanachi prefecture between Tokyo and Osaka. for the test track.
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Figure 4.4: Prineip!es of the magnetic suspension, guidance and propulsion
system, MLU002 (RTRI).
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4.5 Superconducting Generators

In present-day commercial turbine-generators for power generation, a large

d.c. magnet, which is an integral part of the rotor, is driven by a steam or

gas turbine at 50 or 60 revolutions per second. The rotating d.c. field, thu_
produced, sweeps over _ set of 3-phase coils on the stator (outside the rotor),

generating 3-phase power output which passes through a step-up transformer
to the grid system. Power levels in the 100 to 1,000 Megawatt range are typical
for modern stations.

About half of the power loss in the generator, which is around i% of the

total power generated, is dissipated in the copper windings of the rotor m;_gnet.

This creates an opportunity for the use of a superconducting magnet in the ro-

tor, which would not only create substantial power savings over tile life of the

machine (typically 30 years) but would also eliminate massive cooling systems

which are required to remove the rotor power dissipation fl'om the interior of a

normal machine. Due to the higher exciting field of the supercond'aeting mag-

net, savings are expected through size and weight reduction. System stability

is also improved.

Exr_erimcnts on small superconducting generators have been carried on in

the U.S., Japan, \Vest Germany, France and the USSR since the early 1970"_.

For much of this period the U.S. was ahead in the technology, but the usual

"hare and tortoise" scenario emerged in which the U.S. "hare" sat down to rest

in 1983, while the ,Japanese and German "tortoises" continued their steady

progress towards practical machines via a set of long-term (tevelopment pro-

grams.

The Japanese experience is based upon what aM)ears to be steady, partial

funding from MITI over the entire period after 1974. Mitsubishi and Fuji Elec-

tric constructed 6.25 MVA (1976) and 30 MVA (1983) (see F_g. 4.5) machines

[169], Hitachi a 50 MVA unit (1983)[170] and Toshiba a 3 MVA machine for

component testing (1983). The years shown here represent the completion of

tests. After 1983, Mitsubishi performed studies on a model, 1/4 scale rotor
for a i000 Megawatt machine. For these studies, a study group together with

a subordinate working group were organized with members fronl :,nivelsities.

gow,rnment and priwtte research institutes, electric power COml)anies, plus man-

ufacturers of electrical machinery, electric cable, refl'igeration equipment and
materials,

The Imblished results of these st:idles are worth quoting [171]:

1. TheSUl)_:rcon(h:cting genorat<_l will be superim' fl'om the total _,conomi,'
i)oi_:t '._fview, because of such arlvamt'_ges as t.]w reduction of the pow_,r

l_,sses to half those of conventi_mnl generators, improved Olu,rating char-
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acteristics, improved power systems stability as well as reduced manufac-

turing cost due to its reduced size and weight.

2. The superconductor and cryogenic technology can apply to a wide range

of electric power technologies with great merits. These highly promising

new technologies will be able to meet the various requirements of electric

power systems in the future. They will also have pervasive effects leading
to the creation of a new industrial field with wide applications.

3. The development of a practical superconducting generator is considered

to be possible, provided that systematic and strong R&D efforts are
mounted in a well-organized national project.

These recommendations were taken seriously by MITI, who set up an Engi-

neering Association for Superconductive Generation Equipment and Materials

(Super GM) in 1987 to I:andle a 10-year development program. The members
of Super GM are:

• Generator manufacturers: Mitsubishi, Hitachi, Toshiba

• Electric power companies: Tokyo, Chubu, I(ansai

• Central Research Institute for Electric Power

• Electric cable companies: Sumitomo Electric, Furukawa Electric, Fu-

jikura, Kobe Steel

• Refrigeration equipment manufacturers: Tosiliba, Mi_subishi

• J:','_an Fine Ceramics Center (Nagoya)

This group actually reports to the New Energy Develupment Organization,

essentially a trust under MITI which handl¢'s the new generator project as part

of the so-called "Moon Light" project.

i' The Super GM project is I)resently in the stage of component tests. For
exan:ple, at ETL we saw a rotor from Toshiba which will be rotor B in a 70

IVlW macl.ine targt:ted for manufacture betwe('n 1990 and 1993. After 1995,

the project will move on to a 200 MW m,chine to be manufactured and tested

it, the remaining 5 years of the 20th century.

The Japanese power industry expect:; to adopt sui)erconducting g_mu'ators

for thermal phmts after 2000 AD and for nuclear plants after 2015, and it is

cxpect,:d that this teclmology will be utilized in all new power plants after 2030.

iq(_m,of these plmxs (lepenrl upon success with the high--T_ oxide suI)erconduc-

tot's; it. is pre',_ently assumed that liquid heliumcooled low-T_ superconductors

w:ll I)_,us_,d t(_ achi(,ve the st:m,d goals.
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Unfortunately there is no ,lational program on superconducting generators

in the United States. As pointed out earlier, the U.S. 270 MW superconducting

generator project was abandoned in 1983 and we know of no plans to revive this

effort in the U.S. Perhaps, if the Japanese or European projects are successful,
the U.S. power industry will be able to import such machines from overseas, a

sobering thought.

Turning now to U.S. large-scale superconducting projects, we should note

fi, st of all the great success of superconducting magnets in magnetic resonance

imaging (MRI) systems. These magnets are ,4tal components of the majority

of the ,,, 1000 MRI systems already installed in the U.S. American companies

have participated strongly in this business. :i

There are two important large-scale national projects in the U.S., the Su- i

perconducting Supercollider (SSC) and tile Superconducting Magnetic Energy :i
Storage project. For comparison with Japanese project.s, these will be briefly
reviewed.

4.6 Superconducting Supercollider (SSC)

This machine is an advanced synchrotron accelerator to be located in Texas,

near the Dallas-Fort Worth area. The pla:l is to accelerate _wo separate, op-

positely traveling proton beams tip to 20 TeV before bringing the beams into

rollMo.,::, with each other. The accelerator ring will be approximately 53 miles

in circumference in an underground tunnel. Beam bending and focusing will

be achieved by 5,000 dipole and quadrupole superconducting magnets in each

ring. According to present designs the magnets utilize Nb-Ti alloy in a ca-

bled structure, with 6 micron filaments of supercondu,:mr embedd;d in COl)per
strands.

All magnet development work to date (since' 1985) l:as been )elfot '_ rmed

at Lawrence Berkeley Laboratory (LBL), Brookhaven National Laboratory

(BNL), and Fermilab. However, private industry will be invited to bid on

:nanufacturing the magnets in the near fimu'e. It is notyet (:lea:' whether fcn'-

eign vendors, for example the Japanese, will be al':owcd to bid on this work.

The total cost of the magnets will be close to one billion dollars, an attractive

manufactu ."ing opportunity.

A further complication is that the Japan_,se govermnent (and pr_',_:mnal)ly
M(mbusho) has been invited by DOE and by the Board ,_f Ov(,rscels of SSC tt_

join in the project as a scientific partner, along with making a major contri-

bution of financial support to the project. It is not yet clear what Japan will

do in this regard, but it s_'ems lik<'ly that a.ny apl)r_','iabl<" investment on their

part will carry with it a "quid pro quo" on ¢h'v_'lcqmmnt work.
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During oar tour of Japan there was an opportunity to isit the high energy

physics center (KEK) at Tsukuba where we had conversations on _, perconduc-

tivity with Dr. Hiromi Hirabayashi, Director of the Engineering and Scientific

Support Division at KEK, wnc said that they had explored the construction
of various cosine theta magnets of the general type proposed for the SSC. In

reviewing the present SSC design, they concluded that while it had the merit of

being the lowest cost design in terms of material used, the insertion of wedges

in the coil was a disadvantage as regards ease of manufacture. It was the view

of this Japanese design team that a wedge-free coil, would be a better overall

choice and they have prepared such a design. It would seem that a scientific

collaboration between the U.S. and Japan in the research on the SSC would be

enhanced by a U.S.-Japan coeperation in the design of the machine, including

such vital components as the superconducting magnets.

4.7 Superconducting Magnetic Energy Storage

The possibility of the loss-free stolage of energy in high current density, medimn

magnetic field, high volume superconducting coils was conceived after the re-

alization of high field, high current density conductors in 1960. Studies and

small-scale experiments have been carried out in Japan and the U.S. with the

objective of using such coils for the storage of electrical energy in electric power

systems. The gcal is to store energy during off-peak ,:,msmnption and to utilize
this energy in peak periods of consumption, thus reducing t,he needed level of

installed gt.m.'rating capacity.

To be of economic value to a typical U.S. power complex, a storage sys-

tem should be able to handle energy iu the range fl'om about 1:000 to 10,000

Megawatt-hr. The largest energy store(1 in a suporconducting magnet system

to date is about 0.3 Megawatt-hr, (la,'ge coil task (LCT) fllsion system). Hem'o

there is a very large gap in technologic,fi oxperience which nmst be bridgod.
Fortunately there is a requirement fin" an internwdiate 1,'.velof sto,ed energy

under the Strategic Defense Initiatiw' (SDI) which .,.weds electrical pulse power

for beam weapons. In this connecti,n, SDI has coumfissio,wd two independm_t

reruns of U.S. contractors to perform &,sign work on liquid lwlium e, oh'd, Nb-
Ti alloy coils to store energy at about the 30 Megawatt-hr level. This l_rogram

is presently in the study phase and the actual c(mst, ructi,m c;f storage maRn,'ts

may Lot take place for at h'ast two years.

Other possible applications _f storago magnets haw }u,cn _ug;g,,st,,d. F_n'

examplo, JR is believed to l*o <'(msid,u'ing tho use of supcrc, mdueting magnets
as tracksi&' power sources fin' th,' Maglev train.
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4.8 Recent Advances in Low-Tc Conductors

in Japan and the U.S.

M r "t superconducting magnets are constructed from multi-filamentary (MF)

superconductor threads embedded in a so-called stabilizer material, usually

pure copper or Muminunl. The superconductor filament diameter is usually

20 #m, or less, depending on the dynamic requirements placed on the magnet
(rate of change of field or a.c. frequency). The use of fine filaments reduces the

local magnetization energy density due to high critical current density in tile
material, which in turn cuts down on the energy loss due to flux jumps. This

prevents tile triggering o_ :lormal zopes in the magnet.
Magnets fall into two categories, flllly stabilized coils where the ratio of

stabilizer area to the superconductor area is large (> 100), and partially s'_a-

bilized coils where the stabilizer to superconductor ratio l;os between 1 and 2.

The selection of this ratio is largely determined by the coil geometry. The low

current density available in the fully stabilized ease is not acceptable for mmly

types of applications; usually space or weight considerations force the designer

to u'se a partially stabilized winding. In this type of magnet, if the maxinmm
.1=is exceeded, the magnet qnei., ".es, its temperatm',' rises, and there is a loss

of field for a period _.:_er:nined ! y how long _he -:ystem takes to cool down

cl.,,-. ......... " simi-ly inconvenient.' " " This is not a ...._ ..... _.__:_ ..again. ,.u(; i( _._

FigLlr¢_ 4.6 (adapted fi'om data of the Hitachi Research Laborat_,ry) shows

rh¢, fi('ld and current r_'gi()ns in which the' various magnet type's of Tal)l(, .t.4

were designed. Apart from fllsion mM high f:,'l(l research magnets, the other

magn_,ts Ol,_,rat_, in the, f','ld rang_' b_qow 10T and utiliz¢, Nb-Ti sup_,rconduc-

tors. Indeed, lltorc than 90cX, of the superconducting magnets ,:onstr,wted to

date. have used Nb-Ti conductors. Desi>ite tlw r_,lativ_' matin ity of Nb-Ti tech-
n,._logy, iml)r_w,,m_,nts and advan('_,s have rec,'ntly occlnT('d ill both the U.S.

and .lapan.

4.8.1 Nb-Ti Conductors

Critical ,'mr{'nt d('I_sity is a vital imram('t_'r in th,' c_mstrmti()n cost of thl, SSC

m,_gn_'ts, since the magnet m'_t,'rials constitute, al;<mt om'-third _ the magm,t
cost. Aa int_'n_iv_' d_'v_'lommnt i>r_gram on Nb-Ti (',_ndu('t,_r._ has be_'n _mril'd

out ,.w,,r the' im:t f,.:,:r years at the' Uniw'rsity of \Visc,_nsin, LBL and BNL
(Fig. 4.7). Critical curr_,_t d:,nsiti,,s..1,., at 51' has h_,_,n rais,'d flom ar, mnd

2 xl0" A/,'m _ t,_ al_(mt 2.8 xl0 '_ .-_/cm", by attcnti(_n t_ it:,' h,_n',,g_'n_'i',y of

the' all_y bill,'t., mM t_, *h_' h,'at tr,'atm_,nt cv,'l< As Fi_,. 4.7 indicates, th_s,,

mq_r,w,,m_,nts ha_',' n_t _,nl.v l_,_,n ;,clii,,v,,,l ly thr,,_, ,,f lh,, l:.S. lms,,d SUl,pli_,:s.
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but also by Furukawa Electric. Similar material was indicated to be available
from Sumitomo Electric.

As the filament size declines below 20 #m, the cost ef the multifilament

(MF) material increases, but certain improvements in electrical properties ac-

crue. The a.c. and dynamic losses decline more or less continuously down to

filament sizes of about 0.5/*m. The residual magnetization of the conductor

also decreases, which is important for an accelerator with a sweeping field start-

ing from zero. Both of these effects are expected for type II superconducting
material of fixed critical current density, according to the Bean model of the

i magnetization and the area of the hysteresis loop [172].
For filament sizes below 0.5 #m, other phenomena besides simple type II

magnetization become important. These include the proximity effect and type I

: current penetration of the filament surface. Both of these tend to raise the

• electrical losses with decreasing filament diameter. However, there is a lack of

understanding of the basic loss mechanisms in this region of filament size, and it

is possible that even lower losses could be produced with further development.

It was our impression that most of the Japanese materials suppliers have
carried out R&D on filaments down to the sub-micron range. Their goal is

probably connected with the development of electric power equipment such

as the superconducting generator discussed in §4.5. We were told at NRIM
that both Sumitomo Electric and Furukawa had achieved good MF material

in production at 0.5 Ira1. It was also indicated that R&D studies were made

for filaments as small as 0.03pro. Although some work has been carried on for
submicron filaments in the U.S., it was the JTEC Panel's impression that the

effort was considerably larger in Japan.

4.8.2 A15 and Chevrel Phase Conductors

The utility of Nb-Ti alloys falls rapidly above 10T and in this field region

other materials must be considered. In the U.S. there has been a good deal of

development work on NbaSn-based conductors, utilizing the so-called "bronze

process". In this process, a composite of Nb-metal and Cu-Sn alloy is first

extruded and drawn to MF strands, and finally NbaSn is formed as a last step

by diffusion of tin out of the bronze into the Ni filaments. Materials of this

general type have been used in some experimental dipoles for the SSC and one

of the six coils in the LCT system was a force-cooled (as opposed to bath-

cooled) NbaSn conductor. However, the U.S. experience in the 10T and 20T

field range, although the U.S. represented the leading world effort in this r,'mge

before 1970, has since been lacking in diversity. Perhaps this can bc attributed

to the fact that the market for super-field materials is negligible (if one does

not take the long-range view) and that the U S. high field (research) magnet
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Figure 4.8: Current density versus magnetic field for various advanced high
field conductors from various sources.

effort has suffered slow strangulation at the hands of the National Scieace
Foundation.

A completely different situation exists in Japan. The NRIM laboratory

is famous for its pioneering work in developing A15 conductors and much of

this technology has been successfully transferred to the Japanese materials

suppliers.
In our visit to NRIM ttle JTEC team was briefed on a process for producing

very fine multi-filamentary coaductors of Nb3A1, with final filament size around

1,000/_,[173]. This process depends upon drawing down a tube of Ni filled with
A1, 10% Mg alloy. The hardness of tile A1-Mg alloy is comparable with that

of niobium, not only when annealed but also after cold-working. Wire formed

from a single tube is cut into short sections and rebundled to form a multi-

filamentary composite. The final step is a diffusion reaction to form Nb3A1

filaments at 700-1000°C. It will be necessary to add stabilizer to the system
to achieve a practical conductor, but nevertheless the J¢ versus H data show

great promise for this material (Fig. 4.8). In addition it was found that the J¢
value of the new Nb3Al conductor was less sensitive to mechanical stress than

in the case of multifilnmentary Nb._Sn. Indeed, the reduction of .1,. per unit

strain was observed to be about three times lower for Nb3AI than for Nb3Sn.

sl :!
i
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A selection of J_ versus H curves for other A15 conductors developed in

Japan is shown in Fig. 4.8. We cannot discuss all of these materials in detail; our

purpose here is to point out the broad approach which the Japanese laboratories

have adopted to the high field range. The work on the single core Chevrel phase
wire was carried out at the Mitsubishi Electric Laboratories, and achieved quite

high Jc values for this material (,,- 2 x 104A/cm 2 at 20 tesla) [174].

4.9 High Magnetic Field Research Facilities in

Japan and the U.S.

High magnetic field research facilities are important for solid state research in

a number of important fields, including research oil both low temperature anC

high temperature superconducting materials. There are two general categories

of equipment. First, magnets which provide steady or d.c. fields; these extend

at the present time to just over 30 tesla. Second, pulse magnets which pro-

vide large peak fields for short times. We shall discuss these two categories

separately.

4.9.1 High Field Magnets

In the case of steady magnetic fields, there are two types of equipment, first

totally superconducting coils, which have achieved slightly over 20T maximum

(KFK, W. Germany) and second water-cooled solenoids (Bitter, polyhelix)

which also can achieve over 20T. By placing a water-cooled normal solenoid

inside of a superconducting coil (so-called hybrid magnet), the maximum field

h_ been increased to around 30T, with pl,'ms for fields up to 45T in the fu-

ture, although the technology for this has not been fully developed. Of course,

the working bore is au important parameter for such magnets, and, to some

extent, bore size can be traded for increased field. Installations of this type

require substantial investments ill power supplies, water-cooling facilities and

helium liquefaction systems. Consequently, there is only one such dedicated fa-

cility in the U.S., the Francis Bitter National Magnet Laboratory (FDNML), at
MIT, in Cambridge, MA. A similar facility exists at Tohoku University, Sendal,
Japan. Both of these laboratories have several stand-alcne water-cooled and

superconducting magnets for experiments up to 20T, but hybrid systems are

utilized for higher field experiments in both laboratork Table 4.5). MIT is
currently constructing a Hybrid III system which will reach 35T in a 33 mm

bore. Tohoku has set csscatially the same goal for their facility.

_. MIT has plans on the drawing board for a 32 ram, 45T magnet, but this :',

i will require a nmjor investment in a larger power supply (20 MW) and other
,_

!i S2
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Table 4.5: High magnetic field d,c. hybrid facilities in Japan and the U.S.

Location Bore (mm) Max field (tes]a)
Tohoku, Sendai Hybrid 1 32 31

Hybrid 2 52 23

Hybrid 3 32 20

MIT, Cambridge Hybrid II 33 31.8

facilities for which funds are not yet available.

A proposal to Monbusho to improve tile Sendai facilities is apparently being
prepared. In addition, a completely new high field facility will be constructed

at Science City (Tsukuba) with plans for developing a 40T hybrid magnet, a

> 20T all superconductor magnet and an 80T short-pulse magnet.

To summarize the Japan versus U.S. situation for d.c. fields, the U.S. fa-

cilities at present seem to be comparable to those in Japan or EUrope, and

the immediate plans for Hybrid III, 35T, will maintain this comparability. It

should also be said that the FBNML User program is really outstanding in

the provision of high field services to the science community, whereas Tohoku

seems to have relatively fewer users.

It also seems obvious that unless new flmds are provided at FBNML, the

facilities will eventually be outstripped m the next decade by European and

Japanese developments, particularly those planned for Tsukuba. The JTEC

Panel was given no dctMls on these pla.ns during our visit to the present
Tsukuba facilities.

4.9.2 Pulsed Field Magnets

In Japan the largest facility for producing pulsed magnetic fields is a dedicated

facility known as the Megagauss Laboratory, ping of the Institute for Solid

State Physics, University of Tokyo. The principal cquipment in this laboratory
consists of a set of capacitor banks ranging in size from 200 KJ up to 5.0 MJ, an

elaborate switching and control system and various experimental stations with

massive protective enclosures to contain the energy release from the magnet
coils.

The following techniques are utilized for pulse field generation:

1. Discharge of 200 KJ through a nmlti-turn, filanmntary reinforced copper

solenoid which is nondestructive, to some extent, and yields a field of 50+
tesla, for a time duration of ,-,5 ms.

2. Disclmrge of 1-2 MJ through a single-turn copper coil yielding fields of
200+ tesla for a. time duration of ,-, 4 ms (coil destroyed, sample may be

saved).
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3. Discharge of 5 MJ into a special flux compression pair of coils but the

sample is destroyed, yielding a field of 350+ tesla for a time duration of
,'-,1 ms.

Aside from the armored enclosures for the exploding coils, special arrangements
are made to ground the electronic systems in this laboratory. This laboratory is

the best equipped pulsed field facility in the world and has allowed the Japanese

to mM{e pioneering contributions to research on high field properties of oxide

type superconductors.

A megagauss laboratory on the scale of that at ISSP undoubtedly involves
initial costs of several million dollars. However, useful pulsed fields of somewhat

lower magnitude can be achieved with smaller capacitor banks for well below

$1 M. Such facilities exist at several other locations ill Japan, including Osaka
and Sendal.

Although pioneering work on pulsed magnetic fields was done in the U.S.

in the 1950's, the United States still lacks a dedicated pulsed higl_ magnetic

field laboratory. For mmly years pulsed magnet work has been carried out at

the Francis Bitter National Magnet Laboratory (MIT) using type (1) multiturn

technology. In fact, FBNML holds the world's record for millisecond duration
fields, based oil Dr. S. Foner's niobimn-filament, reinforced copper solenoid
which attained a maximum field of 68 tesla. It is understood that sevelal

Japanese laboratories are in the process of adopting this technique. The present

U.S. efforts at the FBNML are innovative, but could almost be described as

"token efforts". A new initiative for a special, dedicated Megagauss facility

seems urgent in tile U.S.

4.10 Summary

1. Large scale applications of superconductivity throughout the world are

presently based upon low temperature superconducting materials such as
Nb-Ti and Nb3Sn. It is expected that these materials will be gradually

replaced by conductors fabricated fl'om the new high temperature oxide

superconductors. Both Japan mid thc U.S. are extremely active in R&D

aimed at this goal.

2. With the except, ion of magnetic resonance imaging (MRI), which is the

principal commercial application of superconductors at the present time,

large scale superconductive application products are mainly supported by

government funds mid coordinated by national laboratories in both Japan
and the U.S. The scale of activities is comparable in both countries.

3. In Japan at the present time there are two major (-v$100 M) development

projects, superconducting magnetic levitation for trains (maglev) and

superconducting electric generators, both aimed at specific commercial
m_kets. The U.S. also has two major projects, but one of thesc is aimed
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at basic science, the Superconducting Supercollider (SSC), while the other
I is intended for a combined defense/commercial goal, the Superconducting

Magnetic Energy Storage (SMES) system.

4. Japan Railways has successfully developed a superconducting magneti-
cally levitated vehicle which has achieved speeds exceeding 500 km/hr.
However, very extensive engineering development and an enormous cap-
ital investment will be necessary to bring the present embryonic system
to main line railroad standards. There is no comparable U.S. activity.

5. MITI has formed a consortium of Japanese manufacturers and utilities
to develop prototype superconducting electric generators at about 70 and
200 Megawatt output in the next decade. Extensive experience exists
throughout the world with smaller experimental machines of this type; the
project is quite conservative. Developments of such systems are presently
suspended in the U.S.

6. The U.S. Congress has tentatively authorized DOE to build a 53 mile cir-
cumference synchrotron accelerator in the Dallas-Fort Worth area. This
machine, the SSC, will accclerate two separate counter-rotating proton
beams up to about 20 TeV before collision. The 10,000 superconduct-
ing dipole and quadrupole magnets required will constitute by far the
largest superconducting projcct ever attempted. DOE has to persuade
other countries expericnced in superconducting technology to participate
in this project, especially Japan.

7. Two prototype superconducting magnetic encrgy storage coils at about
the 30 Megawatt-hr level are under design by two separate industrial
teams in the U.S. The project is supported by the Strategic Defense
hfitiative (SDI) as an energy source for beam weapons, but systems of
this type are also of interest for peak-shaving in electric utility systems.

8. The large scale projects discussed so far are highly dependent for success
upon the availability of s% histicated, complex superconductors from ma-
terials suppliers. In the U.S. there are essentially 4, more or less domestic
suppliers, whereas in Japan there are at least 7 suppliers of which 3 are

subsidiaries of large electrical manufacturing companies. This disparity
has not prevented the U.S. fi'om maintaining a competitive position in
Nb-Ti conductors, from which over 90% of superconducting magnets are
constructed. However, the Japanese presently dominate the market for
high field materials in the region above 15 T.

9. High magnetic field research facilities are vital for R&D work on super-
conductors, scmiconductors, etc. At present, the Japanese and Ameri-
can facilities are comparable for steady fields up to about 30 tesla. The
Japancse have a pulsed magnetic field facility at the University of Tokyo
which is superior to anything in the U.S.
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Chapter 5

Processing of Superconducting i:i
Materials

Rod K. Quinn

5.1 Introduction i
]

Large scale applications of superconductivity (see Chapter 4) such as magnets

for high energy physics experiments, magnetic resonance imaging (MRI), super- ,_

conducting generators, and superconducting magnetic energy storage (SMES)

require superconducting materials in forms useful for manufacturing these de-

vices. The development of processing techniques for the production of Nb-Ti

multifilamentary wire for the winding of superconducting magnets opened the

door for application of the "conventional" low-T, materials to the production

of high field magnets.
Large scale application of the high-T¢ superconducting (HTSC) oxide ce-

ramics will also require the development of processing techniques to form these

matcrials into conductors such as wire, tape, or monolithic shapes. There

are several materials-related issues critical to achieving such development of

practical conductors fabricated from the high-T¢ oxides. These materials are

ceramics, and by their very nature they are brittle and difficult to form into

shapes such as wire and tape, useful for bulk conductor applications. Aside

frcm this obvious problem, the critical issue that confronts every processing

scheme is the ability to form the material or its precursors into a final net

shape that can carry a technologically practical current der, sity.
The critical current density Jc of the conductor as a function of applied

_, magnetic field is the figure of merit for applications-oriented processing of the
high temperature superconducting phases, and a target of Jc = 104 A/cm _ at

liquid nitrogen temperature (77 K) and 2 tesla applied field is often quoted as
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a medium-term goal to make high temperature superconductivity compounds

interesting from an applications standpoint [175]. The critical current J_ is

strongly affected by a number of materials-related parameters such as struc-

tural features, which include grain boundaries, defects, and second phase in-

clusions, both within grains and at grain boundaries. Many or all of these _,

features may directly affect the magnitude of flu_<-pinning forces that allow

current to flow through superconducting materials. At this time, little is known

about the mechanisms of flux pinning in the high temperature superconductiv-

ity materials. However, through much research over the past two years, it has

become apparent that several processing strategies are necessary to accommo-

date _hese materials parameters and improve the Jc's in the high temperature

superconducting materials. Specifically, the processing strategies must be di-

rected toward achieving a high density material, a high degree of int.ergranular

orientation of the ab plane of these perovskite compounds along the direction of
current flow, and the materials processing must result in minimal grain bound-

ary contaminants that may act as weak links in the conductor, thereby reducing

J,.

5.2 Techniques for Processing High Tempera-

ture Superconductors

Worldwide, the processing of high temperature superconducting materials into

monoliths, wires, and tapes has largely concentrated on the superconducting

phases YBa2Cu3Or-x (To = 93 K), and the structurally related families of

Bi-Sr-Ca-Cu oxide (Bi2Sr2Ca,__Cu,,Ox (n = 1,2,3), Tc = 80 - 110 K) and T1-

Ba-Ca-Cu oxide (TI,,Ba2Ca,,_ICu, O_ (m = 1,2; n = 1,2,3), Tc = 90- 125 K),

as well as the Pb-substituted analogs of the latter two families. Each of the
compounds contained within these families has a significantly different chem-

istry, and thus significantly different processing strategies may apply. Because

these phases are prepared at relatively high temperatures (8500 - 9500C) and

are thermodynamically metastable, maintaining phase purity during proccssing

is a challenge.
For the YBa2Cu3Or__ compound, the superconducting properties are sig-

nificantly affected by the oxygen stoichiometry which is in turn a function of

temperature. In addition, oxygen diffusion rates are quite low in this compound

[176]. Therefore, when processing YBa2Cu30_-_ to a dense ceramic form, the
ability to achieve adequate oxygen concentrations is often difficult: thus, achiev-

ing proper oxygen stoichiometry must be factored into the processing strategy.

In the thallium system, thallium oxides are volatile under typical processing
conditions. Because loss of T1 fi'om the superconducting phase is deleterious
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to its properties, any processing strategy for the T1 family of superconductors
must address this problem.

Many classical processing techniques have been attempted to produce mono-
lithic conductors, wires, and tapes in addition to a few novel techniques. A
recent review has outlined the necessary processing p_ameters and strategies

[177], and much has been published on this topic. A summary of the most
important techniques that have been studied in the U.S. and Japan follows.
Representative examples and references will be found in Tables 5.1 (for the
U.S.) and 5.2 (for Japan).

5.2.1 Processing of Monolithic Conductors

Most of the processes examined to date are based upon densification and
alignment of grair:; in sintered powder compacts of YBa2CuaOT-x ("12Y')
[178,179,180,194,195]. Hot pressing at high temperatures and the application
of uniaxial pressures have produced pellets of superconducting, textured ma-
terial. Another promising process is melt textured growth (MTG) that relies
on partial melting of YBa2CuaOT-_ followed by directional solidification in a
thermal gradient [179]. Because the high-To superconducting materials have
a preference to grow more rapidly in the ab plane, the directional solidifica-
tion results in highly textured, dense, large-grained materials. The slow crys-
taUization from the liquid also tends to exclude second phases from the grain
boundaries. A modification of the MTG process is quench melt growth (QMG),
where YBa2CuaO_-x is taken well above its peritectic melting point to form

Y203 plus liquid (see Fig. 5.1), and the material is then quenched rapidly to
low temperature [194,195]. This process results in the formation of small nuclei
of Y203 within the matrix. In a second step, the material is once again rapidly
taken to slightly above its melting point and then is directionally solidified.
This process results in dense, large grained, highly textured materials that
have very small inclusions of a second phase of Y2BaCuOs ("211") distributed
within the grains. It is thought that these small nuclei may act as flux pinning
centers. These melt texturing processes are being studied both in the U.S. and
Japan.

5.2.2 Processing high-T_ superconductors to Form W'ires
and Tapes

A widely practiced approach to the preparation of clad tapes or wires involves
filling a metal tube, usually silver, with the desired high-T¢ superconducting
oxide or oxide precursors, swaging the tube closed, and then drawing the di-
ameter of the tubing down to form wire. The wire or tape is then sintercd in
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Table 5.1: Representative benchmark data for wires, tapes, and thick films of

high-T¢ superconductors in the U.S.

Laboratory Proc¢_ Conductor Properties Comments

U. Houston, Controlled cooling of .Ic = 15,000 - 18,500A/cm 2 Ref. [178].

Texas Cen- melt through YBa2Cu307-= _ 77K, 0T; Dense, highly
ter for Super- peritectic (l*C/hr). Jc = 75,000A/cm2(P ulsed) oriented
conductivity @ 77K, 0T;

Jc =37,000 A/cm 2 (pulsed)
(_ 77K, 0.6T

AT&T Bell Melt-textured growth. Jc=17,0OOA/cm 2 @ 77K, 0T; Hcf. [179]
Directional solidification Jc = 4000A/cm2 @ 77K, 1T Dense, textured

of YBa2Cu3Or-x melt bars, 1 x2x30 nun 3

AT&T Bell Hot forging of YBa2Cu3Or-s Jc " 3000A/cm _, T unspecified Ref. [180]
powder at 1000*C, 26 MPa, 6 hr. Textured pellet

Stanford U. Laser heated pedestal R = 0 @ 80-SSK Ref. [181]

growth of bi-Sr-Ca-CuOx Jc(pulsed) -- 6O,000A/cm 2 @ 68K Highly oriented
fibers fiber, with ab plane

along fiber axis

Argonne Tape cast YBa2Cu3Or-s powder R --- 0 @ 86-90K; Ref. [182]
National with and without Ag powder. Jc=300A/cm2 @ 77K YBa2Cu3Or-,
Laboratory Tape placed onto Ag foil sub- /Ag

strate, f, llowed by sintering composite; good
mechanical

properties

Superconductor Spin-on composition of R = 0 _ 10OK, R,=250 mf_ _.ef. [183]
Technologies, TI-Ca-Ba-Cu 2-ethyll_exanoates @ 77K, 150 GHz. No Jc reported Textured, 3/zm
Inc. deposited onto substrates films on (100) MgO

or YSZ

Massachusetts Spin-on process of R = 0 @ 70-75K Ref. [184]

Institute Pechlnl-citratc/ethylene Jc = 5 X 105A/cm ;t _ 4K, 0 T O.5_m/coating
of "l'¢chttulogy glycol polymerization mixture for

Bi-"4334" films on (I00) Sr'l"iO3

IBM. Yo't'town Spin-on composition of Y, Ba, R = 0 @ 91K; U,ef. [185,186]
Heights Cu tritluoroacetates dissolved in Jc --- 10%_/cm2 @ 77K, Cu Laser pattcra-

methanol. Various substrates. 0T on LaGaO3 ing of "green" film

Micro- Spray pyrolysis of R = 0 @ 81K; Ref. [187]
electronics Bi-Sr-Ca-Cu nitrates onto (10o) Jc = 4000A] cm2 @ 77K 3ms tlfick film

and Computer MgO and BeO. Post depo_i- on (100) MgO
Technology tion melt.quench-anneal to den-
Corporation sify film. Bi-"2212", "4334" stoi-

ch;ometry.

Sandia Screen printingofYBa_Cu3Or-s R = 0 @ 91K; Ref. [188]

National powder (5_m) dmper_ed in an al- d_ = 93A/cm _ @ 76K 300urn films
Laboratory cohol. Printed onto substrates.

Los Aiamos High-rate magnetron sputtering R -- 0 @ 90K; R_ = 6 - 7 mS] Ref. [189]
Natiw'al front single target T1-"2212" and @ 15K, 22GHz; 25 ant tlfick fihns. 20-25 mn/h deposi-

Laboratory "2223" targets No de reported tion rate
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Table 5.2: Representative benchmark data for wires, tapes, and thick films of

high-T_ superconductors in Japan.

Laboratory Process Conductor Propertiest Comments

Sumitomo Ag-sheathed (Bi,Pb)SCCO-0.14x4mm _ tape: Ref. [15,190]

tubes drawn to Jc = 1.7 x 104A/'cm 2, 0T;

wire, then Jc =1700 A/cm 2 at 0,1T;
cold rolled YBa2CuaO7 ,

to tapes Jc = 4 x 103A/cl_ 2

Multifilamentary 36 (Bi,Pb)SCCO filaments; Ref. [191]

HTSC wires/Ag 0.16 mm wire;

sheath Jc = 1050A/cm 2

Hitachi Ag-sheathed, YBa2CuaOr__ Ref. [192,193]

HTSC powders Jc = 3.3 x 10aA/cm2; YBa2CuaOr__

drawn and rolled TBCCO-J, = 6 x 103A/cmX; result

into 0.5 mm (TI,Bi)SCCO-Jc = 104A/cm 2 Highly

tapes oriented

NRIM Tape cast, sin- (Bi,Pb)SCCO; Jc = 1850A/cm 2, Ref. [16]

tered, and rolled 0T; 30/_m thick,

_o high density 3 mm wide, 100 mm long

Nippon Quench-melt- YBa2CuaOr_, Ref. [194,195]

Steel growth to form J¢ > 104A/cm 2, 1T Highly
monolithic oriented,
conductor dense

Mitsubishi Aerosol particle BSCCO-1/Lm thick Ref. [196]

deposition on (100) MgO: Oriented

lpm/hr .1_= 8000A/cm 2, 0T.
onto substrate, J_ = 100 A/cm 2, 0.4T

melt textured,
and annealed

NRIM Magnetron sput- YBa2CuaOr__- 1-2#m thick: Ref. [197]

Wring on HHastel- R = 0 at 80K,

loy X substrate J_ = 200A/cm 2

with MgO buffer

_i layer
f All J_ values at 77 K.
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air or oxygen to densify the conductor. Silver is the metal of choice because

of its ductility and also due to the ability of Ag to transport oxygen to the

superconductor interface. Wires produced in this fashion can then be swaged

together in bundles, and reworked to form multifilamentary conductors. The

wire may also be rolled down to form tape with thicknesses less than 1 ram.

The mechanica!l work imposed on the material lends some texturing to the

wire formed. Most of the published literature on this topic is by the Japanese

[15,190,191,192,198].

Tapes may be prepared by classical tape-casting techniques of dispersing the

high-To superconducting ceramic powder into an orgaslic binder and solvent,

casting the tape onto a flat surface using the "doctor blade" process to achieve

a uniform slurry thickness on the order of 50 - 500 microns. The cast slurry is

spread uniformly across a flat surface with a fiat blade or similar device (hence

the name) and allowed to dry and cure. The resulting flexible tape that can be
removed from the surface on which it was formed, cut to the desired shape and

processed at high temperatures to remove the organic binders and to sinter the

ceramic particles. The tape at this point is in the form of a brittle ceramic.

The unsintered "green" tape may also be placed onto a substrate and sintered

to form a composite. Because of the plate-like morphology of the high-To

superconducting crystallites, some texturing may result during the process as

a result of the mechanical shearing that takes place during the application of

the doctor blade to the slurry. There is also some propensity of the plate-like

crystallites in the slurry to orient on the fiat casting surface. Some or all of

this grain orientation may remain after the sintering steps. Tape-casting by

the doctor blade process is being investigated in Japan and in the U.S.

Another technique to draw unclad wire relies on pulling fibers from a melt.

The melt may be produced by a small area laser heating of a precursor rod,

and then drawing a crystalline fiber fi'om the molten zone, using a seed crystal

[181]. A somewhat analogous technique consists of drawing the fiber from _
melt that has been pulled to the top of a capillary. The capillary is partia.lly

immersed in a crucible containing the melt, and continuously feeds melt to the

growth zone. Texturing occurs in these processes bec_use of thermal gradiexlts
that induce directional solidification of the fiber. There is only a smaU amount

of work in the U.S. in this area, and none reported in Japan to our knowledge.
Other techniques that have been described in the literature such as ct, n-

_'erting alloy ribbons to the oxides [199] and spinning fibers from polym,'ri_'

precursors [200] may also be amenable to producing conductors in the form of

wire or cable. Transition temperatures for YBa_Cu3Or__ m_,terials IU'_q)nred

by these techniques _lre greater than 80 K. Since critical current densiti_,s _tr_'

not reported, it is too soon to judge the applicability of these techni¢lu_.s to
conductor fabrication.
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5.2.3 Processing of high-Tc Superconductors to Form
Thick Films

The preparation of thick films on a substrate having tile shape of a wire or
tape may serve as a practical composite conductor. There are many techniques
that have been described to apply thick films to substrates. These include

spin-casting or dip-coating a substrate with a solution or a sol containing the
metal ions, followed by conversion into the superconducting phase at high tem-

perature. Fihns up to tens of microns thick may be prepared by repetitive
application of the precursor coating. Highly dense films axe difficult to obtain
by these processes due to low ceramic yield _d to the ew,lutioa of a consid-
erable amount of gaseous byproducts from the fihn during decomposition of
'.he precursor components. It is possible that subsequent melt processing could
lead to higher density films. Most of the published literature in this axea is
from the U.S., although the area of solution processing of ceramics is a known
Japanese strength.

Thick films may be deposited by spray or aerosol pyrolysis of solutions

containing the metal ions onto heated substrates. Again, as the droplet or
particle strikes the hot surface and precursor decomposition takes place, it is
difficult to obtain dense, smooth fihns without resorting to post-deposition melt

processing.

Plasma spraying of high-T_ superconducting oxides onto substrates has also

been investigated ,as a teclmique for preparing thick films (ef., Ref. [187j). The

process involves injecting the oxide powder into a plasma source and directing
the resulting spray at a substrate. Very thick coatings may be obtained in

this way. The pla.sma generated droplets are at very high temperature, and

the interaction with the substrate and the rapid thermal quenching that the

droplets undergo are believed to be deleterious to the coating properties because
of chemical inhomogeneities and contamination from diffusion of the substrate

components into the fihn.

Chemical vapor deposition (CVD) of volatile precursors onto substrates is

another viable process for depositing both thick and thin films contbrmaily

onto non-planar substratrs. The metal ion precursors must be volatile an(t
must be stable u:_(ler the conditions necessary to evaporate the precursors.

The metal ion precursors are carried in an inert gas to a hot substratr where

deposition and (lecompositio,l of the precursor(s) occur. The CVD process may

be performed in the presence of oxygen such that the superconducting oxide

phase may be grown in situ. The Japanese have invested considerable effort

in this technique, and are h'ading the U.S. ir_ this area. Interestingly, many

U.S. researchers working in the s,,micon(luctor industry brgma doing high--T,, i
superconducting CVD research very early on, but found progress to be slow and i

J
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difficult, and conseq,:ently left the area, Now, many of these U.S. researchers

are returning to the use of CVD for the preparation of high-T_ superconducting
coatings because of the apparent success the Japanese have had [19,201]. Also,
the availability of a variety of volatile precursors for MOCVD has prompted

fresh attempts at depositing films of high-T_ superconducting materials onto
substrates [202,203,204,205].

Numerous other methods of preparing thick films of high-T_ superconduct-

! ing materials have been described such as screen printing [188], deposition of
_ colloidal suspensions onto substrates [206], deposition of molten alloys that

are subsequently oxidized to the high-T_ superconducting phase [207], just to

name a few. Another technique having the potential to deposit uniform thick

coatings in a continuous process is high deposition rate magnetron sputtering.
However, there is little published in this area for the deposition of thick films.

All of the above techniques for depositing thick films of superconducting
material onto substrates presently rely mainly on partial or complete epitaxy of
the high-T¢ superconducting oxide phase on the substrate to control the texture
of the film. Epitaxy becomes increasingly difficult to control with increasing
film thickness. There are a few reports that melt processing of the film may

also lead to texturing, and may reduce the reliance upon epitaxy to produce

texturing in thick films. Also, for the techniques that rely on depositing the

high-T_ superconducting material onto a substrate to yield a form useful as
a tape or wire, one of the critical issues is the reaction of the film with the

substrate material. Such an interaction typically leads to the degradation of

the electrical properties of tile film.

5.3 Electrical and Magnetic Properties Mea-
surer ents

A key concern when comparing the relative progress of the U.S. and Japanese

efforts in high--T_ superconducting processing lies in the validity of comparing

the critical current densities of materials measured by a number of different

techniques using different instrumentation and often with different measure-

ment criteria. In mrasuring the J_ of mrmolithic high temperature supercon-

ductors having cross sections on the order of 1 mm 2, a current density of 104

A/cm _ req11!res that a current of 100 A be pa.ssed through the sample leads

and the sample itself. This places rigorous requirements on the quality of the

contact hr_,_veen the lead and the sample, and the chemistry of the contact-
superconductor iatrrfacc. Heating of the sample is also of great concern in

this situation. In order to utininlize these problems, many measurements are
perfornmd ill a pulsed mode with small dmy cycles. Because the rate of flux
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motion in many, if not all, of the high-T_ superconducting materials is slower

than the pulse duration used in many measurements of J_, the apparent Y_
measured in the pulsed mode may be much greater (up to an order of :nagni-

tude) than those measured by d.c. methods. To make a meaningful comparison
of critical current densities between materials processed by the many different

techniques and the different laboratories, it is therefore imperative to spec-

ify the conditions under which the measurements were made. For this reason,
there are often difficulties in comparing Jc's appearing in the literature, because
of insufficient information about the measuremc:tt technique used in obtaining

the stated values of J_.

In the U.S., the Defense Advanced Research Projects Agency (DARPA)

high-To superconductivity program and the Department of Energy Supercon-

ducting Technologies for Electric Power Systems (STEPS) program have par-

ticipated in attempts to encourage standardization of the measurement pro-
cedures, criteria and reporting of T_ and J, values. This effort is beginning

to pay off as more published accounts of U.S. high-T_ superconductivity re-
search include the details of the measurements. It is hoped that this effort will

be adopted internationally so that more valid comparisons with results in the

Japanese literature may be made.

5.4 Summary of High-T Materials Processing
Results in the U.S.

A representative survey of the results achieved in the U.S. in the area of mono-

lithic conductors, wires and tapes, and thick films appears in Table 5.1, includ-

ing the relevant references.

5.4.1 Monolithic Conductors

Critical current densities have improved over the past one to two years from Jc

= 500 A/era 2 at 77 K in pressed and sintered powders up to 18000 A/cm 2 at 77
K in zero applied field, and Jc = 4000A/cm2 at 77 K in a field of 1 T through the
melt processing of sintered powder ceramics of YBa_Cu30___ . These r_.:mlts

for gr_-mular materials aro on a par with those obtained for single crystals, but
are still several orders of magnitude less than those of YBa2Cu30,-,: ti_in films

that have Jc values of 10_-10 T A/cm 2 at 77K and zero field (see Chapter 6).
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5.4.2 Wires and Tapes

Although, the number of published results from the U.S. efforts in the fabrica-

tion of wires and tapes has been small, it is known that a number of companies
are working in this potentially high payoff area. Many of the results are dis-

appointing, with J_'s on the order of those found in pressed pellets. The laser

heated pedestal growth of BSCCO fibers appears promising, with J_'s on the
order of 60,000 A/cm 2 (pulsed) at 68 K having been achieved [181].

5.4.3 Thick Films

The preparation of thick films has been extensively examined in the U.S. A

few spin-on processes have been developed, resulting in thick films having rea-
sonably high values of J,. A thick film spun onto a substrate from a polyester

precursor exhibited a Jc of 5x l0 s A/cm 2 at 4 K, while another thick film spun-

on from a solution of the metal trifluoroacetates had J¢ = 104 A/cm 2 at 77 K

in zero applied field [184,185,186].

Thick films derived from spray pyrolysis have had low J¢ values. A promis-
ing processing route involves spray pyrolysis of metal nitrates onto a substrate

to yield a BSCCO film that was subsequently melt processed to a high density

film having J_ = 4000 A/cm 2 at 77 K [187].

A novel preparation of a thick film from a liquid metal-gas-solidification

route to yield a YBa2Cu3Or__ thick fihn on a substrate with J_ = 3x 104 A/cm 2
at 77 K has been reported [207]. This technique is limited to the rare earth

elements that form eutectics in the rm'e earth-barium-copper alloy system.

Although there are many reports of films generated in the U.S. by CVD,

none of the published results have yet equaled the Japanese results in this area.

Many of the U.S. results are from academic institutions, and while T, values
are reported, critical current densities have often not been.

5.5 Summary of High-T Materials Processing
Results in Japan

The bulk conductor work at the Japanese laboratories we visited fell into three

categories: wires, tapes, and thick fihns. The goal in each case was to produce
a conformable structure that would conduct high currc,lt. As stated at o,m

laboratory, their goal was to achiew_ 105 A/cm 2 in a wire coafiguration of 0.5

1 mm _ cross sectioaal area by the end of this year (1989). While this goal would
seem very difficult to obtain, significant advances have been made over the last

year and the Japanese are confident they can maintain this momentum.
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Japanese efforts in developing wires, tapes, and thick films of the supercon-
ducting oxide ceramics draw naturally on the Japanese commitment to ceramics
as a technologically important class of materials. We neither saw nor heard of
extensive work in precursor chemistry and solution processing of the oxides to
yield ceramic powder starting materials. However, as stated above, this area is
a known strength of Japanese industry.

The strength of the Japanese industry in conventional ceramics processing
relative to the U.S. industry results from their long-term commitment to solid
state chemistry, eeranfic science and processing technology. Japanese materials
scientists are well trained in solid state chemistry and they therefore understand
microstructural evolution and control at an atomic level. This was evident from

the presentations and discussions we had and is verified through the referenced
publications. The Japanese progress toward achieving technologically useful
current densities and conformability for wires and tapes through innovative
processing is impressive (see Table 5.2 and references therein). We outline in
this section some examples of this progress.

5.5.1 Wires and Tapes

Several Japanese laboratories, for example NRIM, Sumitomo, Hitachi, Fu-
rukawa, and Kyoto University, are producing Ag-sheathed tapes by various
rolling and pressing techniques. These techniques have produced the best re-
sults in terms of conformability and current densities (see Table 5.2), with dc
values as high as 4x 103 A/cm 2 for YBa2Cu3OT_= [190], J_ > 1.Tx 104 A/cm 2 for
(Bi,Pb)SCCO [15], and J_ > 104 A/cm 2 for (T1,Bi)SCCO [193], all measured by
d.c. transport at 77 K and zero applied field. Examples of extended lengths of
silver shcath/YBa2Cu3Or__ superconducting tapes are shown in Fig. 5.2 in the
form of an extended wire, and in Fig. 5.3 in a magnetic test coil configuration.

Preliminary results for a silver-sheathed nmltifilamentary wire technique
were summarized on our visit to NRIM. This national laboratory has extensive
experience with the multi-filamentary approach to conventional superconductor
wire fabrication. In their process for fabricating high-T_ superconducting wire,
oriented fibers of high T¢ superconducting materials were achieved by filling a
10 mm Ag tube with (Bi,Pb)SCCO powder, which was cold rolled and drawn
dow:: to a 0.16 mm filament. The filament was cut into 36 wires 1.8 cm in

length, packed into a 3 mm silver tube and cold workl_'d into 0.16 mm wire.
The resulting 36 filament wire had a measured current density of 1050 A/cm 2
(at 77K, 0T) [191]. A 252 filament Ag/YBa2Cu3Or-_ composite wire [198] has
also been fabricated Itt NRIM. The superconducting properties of the wire are
not very good (showing broad superconducting transitions), but it is important

97

_._._ o.,__ ......................................................

1990013093-116



Figure 5.2: Photograph of silver she,'tth/YBa2CuaOr_, superconductor tape
(0.5 mm width) used to develop large scale application prototype designs by
Sumitomo Electric Industries, Ltd.
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Figure 5.3: Photograph on the right shows a prototype coil made from silver

sheath / YBa2Cu3OT-, superconductillg tape by Sumitomo Electric Industries,

Ltd. The graph on the left is a plot of the critical current I_ versus maximum

field through the coil.
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Figure 5.4: Ribbon of (Bi_Pb)-Sr-Ca-Cu-O superconductor mechanically _
formed on a 38 mm-diameter bobbin without fl'acture. Photograph provided

by the National Research. Institute for Metals (NRIM).

to note that the capability of multifilamentary high-T_ superconducting wire

fabrication is being developed with vigor in Japan.
Researchers at NRIM are also investigating tape casting by the doctor blade

process (DBP). In this so-called DBP technique, a piece of the green tape

(thickness of ,,_100#m, and density of --,3 g/cm 3) was heat treated at 500 ° C
for one hour. The ribbon was then cold-rolled to a density of 5.8 g/cm 3. The

resulting tape could be bent around a 38 mm diameter bobbin as shown in !

Fig. 5.4 and the best current density achieved was --_2000A/cm 2 at 77 K and "::i
zero applied field [16]. i

t

5.5.2 Monolithic Conductors

The quench-melt-growth (QMG) process, described earlier (see §5.2.1) and hav-

ing promise for wire or monolithic conductor fabrication was described by a
researcher at ISTEC on a two year assignment from Nippon Steel. Critical

current densities exceeding 104 A/cm 2 were reported in such samples at 77 K

and 1 T (Ref. [194,195] and references therein).

5.5.3 Thick Films and Fibers

The Japanese are exploring two solution--derived ceramic processing techniques

with an emphasis on the production of fibers and/or thick films, namely the

I sol-gel method and a fine particle deposition method.
The sol-gel method ha,_ been applied to solution-derived fibers of YBa., Cu:_()_.
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in collaborations between Mitsubishi staff and J. D. Mackenzie of the Univer-

sity of California, Los Angeles [208]. Mackenzie has been involved in sol-gel

processing of glasses and ceramics for several years. In this particular sol-gel
process, Y, Ba and Cu ethoxides and diethylenetriamine solutions were poly-

merized by controlled hydrolysis. The resulting thermoplastic gel was drawn

into fibers as long as 200 era. The fibers were preheated at 250 ° C for one hour,
then fired at 950 ° C for 12 hours in au 02 atmosphere. The resulting fibers were

porous (> 50% porosity) and brittle (tensile strengtb < 1MPa). The porosity,

mad thus the strength, can be controUed by altering the solution polymerization

conditions. Of greater concern is the effect of organic contaminants resulting

from the starting materials and solve4_t. Various heating schedules during and

after the gelation process were attempted with limited success to date.
Another Japanese group has prepared fibers fiom a gel route by ion ex-

changing Y, Ba, and Cu ions into an alginate gel fiber. The ion exchanged
fiber is then sintered to a fiber with good mechanical properties and having a

; Y_ of 85 K [200].

Thick (30-50 ram) fihns of nominal composition Bi_SrCaCu2Ou have been

deposited on MgO (100) substrates by a sol-gel process. Ethoxides of the metal-
lic constituents in the propel" stoichiometric ratios were dissolved in ethanol.

This solution was droppered onto MgO substrates, pyrolyzed at 600-700 ° C
' in an O_ atmosphere and sintered at 870 ° C for two hours. The resulting

thick fihns were oriented along the c-axis and had a T_ of 117 K; however, no

transport measurements were reported [209].
A cursory examination of the Japanese Journal of Applied Physics for 1988

indicates that a large number (> 20) of publications appeared concerning so-

lution or colloidal processing of high-T_ superconducting materials into thick

films. The critical current densities, when reported, have tended to be low

(< 1000 A/cm2), as they have also been in reports from researchers in the

U.S. The rate of publication on the topic of solution processing on high-T_
,,1,,,o,e_,...h,,'_,,,'_.,, . , --.. hn_ _lowod f|...:,,,_f_lr i_:t_ 19_9.

The fine particle deposition method has been used to prepare YBa2CujOT__

and Bi_Sr2Ca,__lCu,,O_ (n = 1,2,3) coatings. In this process nitrates or ac-
etates of the metallic constituents are dissolved in water in the desired stoichio-

! metric ratios to a total concentration of 0.2 mol/liter. A ultrasonic generator
i is used to produce an aerosol of the prepared solution. The mist is introduced

i by flowing oxygen into a reactor heated at 850"-950"C. Thus, fine particles of

oxides are synthesized by thermal reaction of the aerosol and they are subse-

quently deposited onto an MgO (100) substrata. The substrate is annealed at

800"-1050°C for several hours in flowing oxygen to achieve the high-To super-

conducting phase. The thickness of the resulting films is about 1 iLm for a one

hour deposition. For the nominal composition BiSrCaCu_O_, a critical current
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density of 8000 A/cm 2 was achieved below 81 K [196].

5.5.4 Magnetron Sputtered Thick Films

Scientists at the National Research Institute for Metals (NRIM) have recently
reported results on YBa2CujOr-_ films prepared by magnetron sputtering onto

a Hastelloy-X tape with an MgO buffer layer [197]. The zero resistance tem-

perature was 80.4 K in the as-grown state and a critical current density of 200

A/cm 2 at 77 K and 104 A/cm 2 at 60 K. They also reported preliminary results

on YBa2Cu3OT__ films deposited onto a bundle of Chromel fine wires which

look promising with respect to physical appearance. However, no transport

data were reported.

5.6 Discussion

We show in Table 5.2 representative results on wires, tapes, and thick films

from selected laboratories in Japan for comparison with the U.S. results sum-

marized in Table 5.1. As can be seen, for thick film tecknolog_es, the results

to date in Japan and the U.S. are of comparable quality. However, in going

beyond these benchmark results, the Japanese program has more examples of

different processing technology schemes and the industrial commitment to con-

ductor development is much greater than in the U.S. or elsewhere. The only

significant U.S. effort in the technology of processing conformable, high-current

conducting configurations is work sponsored by the Department of Energy, Of-

fice of Energy Storage and Distribution. This work is carried out primarily by

the DOE National Laboratories in collaboration with a few industrial partners.

There are a few small start-up companies, e.g., CPS Superconductor, HiT¢

Superconce, and Superconductive Components, that are working on the pro-

cessing of conformal conductors with federal support, primarily supported by

DARPA. However, the investment of the Japanese government and especially

Japanese industry in processing technology far exceeds the U.S. in manpower,

resources, and state-of-the-art equipmem,. The Japanese have maintained a

significant effort in developing bulk superconductors with a large materials

processing thrust.

5.7 General Observations

This chapter is concluded with a listing of general observations on features of

the overall Japanese progrmn in bulk superconductor processing.
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• The Japanese have a positive, can-do attitude. The Japanese do not sit
back and wait for a complete understanding of basic materials issues be-

fore initiating processing research and development. Instead they pursue

a parallel effort that addres_s the processing of ceramic oxides and com-

posites (which are recognized Japanese strengths), while also investing
resources in developing an understanding of the basic physics, chemistry
and materia!s science of the superconducting materials and of the pro-
cess itself. In a recent review mentioned earlier, the authors state "The

eventual use of the new superconductors may require new processing tech-

niques as innovative as the discovery of the material themselves" [177]. If

this is the case, then the Japanese division of effort _s much more suited

to the task at hand as compared to that in the United S:,Ltes.

• The major Japanese effort focuses on silver and powder metallurgy pro-

cessing with a strong emphasis on metallurgical techr, iques. The U.S.

programs do not have a strong metallurgical processing emphasis. The

Japanese effort in solution processing has declined substantially from 1988
to the present, probably in response to the lack of success in achieving

high critical current density coatings with these processes. It appears
that the Japanese have shifted their solution processing effort to other

processing strategies.

• At all the Japanese industrial laboratories we visited there would be teams

of six or more principal investigators having complementary skills and

backgrounds working with technician suppmt toward common goals. The
U.S. efforts tend to be centered on individual specialists working reason-

ably independently, only collaborating when the occasion demands. This

teamwolk, that is the signature of the Japanese effort, allows for more

rapid advancement when break-throughs occur, i

i
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Chapter 6

Superconducting Electronics
and Thin Films

William J. Gallagher and Richard W. Ralston

6.1 Introduction

Modern superconducting electronics traces its origin back to the discovery of

the Josephson effect in the early !960's [210,211,212], and today all commercial

superconducting electroili(:s involve (low--T¢) devices based on this effect. Su-

percenducting quantum inteI_'erence device (SQUID) magnetic sensors are used

in instrumentation in fundamental physics, geophysics, and biophysics [213].

For biomedical applications, there are large multichannel SQUID gradiome-

ters under d.evclopmcat. Furthermore, there arc now commercially available

sensitive ultra fast sampling oscilloscopes based on the switching of Josephson

junctions, and a number of standards laboratories are now operating 1 or 10 V
standards based on the a.c. Josephson effect in series strings of thousands of

junctions [2' 4].

These analog applications of ,]osephson devices wcrc largely made fcasibl(,

in sophisticated forms because of the development of thin film technnlogies for

the fabrication of Josephson devices. A pioneering development of thin fihn

technology for Josephson devices was undertaken most extensively by IBM's

Research Divisi(_n fi'om just after the discovery of the Joscphson effect i,ntil

September 1983, wlmll a large (> 100 l)(,rsoa) (:ff,)rt to develop SUl)erconduct-

ing tcchnolop_y for digital computer circuits was Wrminated [215]. At that
time, logic at the l()O0-gat(,s-l)Cr-chi 1) level was thought to be raider control,

but a fully functi(mal 4K sul)nan(,s_'('ond raa(lom access memory (RAM) was

thought to I)_. two y(,ars away. aad not to hay(" overwhelming perfor,nan('e
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advantage. Smaller digital Josephson research programs had also been under-
taken by AT&T Bell Laboratories and by Sperry Research, but both of these

programs were terminated just prior to the IBM cut-back.

Since 1980 there has been a significant effort at several Japanese laboratories

aimed at developing digital Josephson technology [216]. In the last two years,

these efforts have resulted in the demonstration of fully functional 4-bit-slice

microprocessors with up to 24,000 junctions per chip and in memory chips of
4K-bit density that appear to be fully functional except for lithographic defects.

A side result of this effort has been the development of a robust all-refractory

technology that is being adopted for other applications around the world. At
the present time, however, it is clear that the chip technology available in four

Japanese laboratories, the Electrotechnical Laboratory, Fujitsu, Hitachi and

NEC, far exceeds that available anywhere else in the world.

An additional arena of considerable promise for superconducting electronics

consists of a variety of high-frequency analog signal processing devices that

exploit the low microwave losses of superconductors and make use of active

superconducting devices [217]. This activity has been mainly pioneered in the
U.S. at MIT Lincoln Laboratory.

The _dvent of high temperature superconductivity offers the possibility of

considerably lowering the entry threshold for these applications by enormously

simplifying the cryogenics. In addition it offers the possibility of allowing super-

conductivity and superconducting devices to be integrated with semiconducting

devices operating at a temperature at which near optimum performance can

be achieved. From what is already known, most of the analog applications

appear to be feasible, assuming contim,ed progress can be made in the mate,'i-

als and processing aspects of the new high temperature superconductors which

are complex, highly anisotropic materials. The feasibility of digital Josephson

applications and the analog application._ that. require high quality Josephson

junctions depend also on answers to certain flmdamental questions about the

new superconductors, such as whether or not there is a gap in the material and

what is the density of excitations.

Though much work remains to be done, thrre has already been and con-

tinues to be considerable progress around the world in making thin films of

the new superconductors that perf()rm well in liquid nitrogen. Highly oriented

films with large critical current densities have been made on selected substrates

for most of the high-T, materials systems by a mmlber of deposition methods.

Good SUl)erconductil, 2' results have been rel)orted for patterned structures with
dimensions down to less than 1 t_m. The basic fimction of r.f. and d.c. SQUIDs

has been demonstrated in simph, single-level grain-bound,'uy-based devices, add

impressively low noise has been reported, High fi'equ(':Lcy losses in the new su-

l)ercondu('tors at 77 K have 1)een shown to 1)e h)wer than in any cooled normal
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metal. New substrate materia2e have been reported that will likely lead to

large-area substrates with good dielectric properties.

Progress and breakthroughs are still needed however. No convincing high-

Tc superconductor-insulator-superconductor junctions have been reported, nor

have there been convincing liquid-nitrogen temperature demonstrations of de-

liberately made weak-link structures. No electrical data has been reported on

multi-leve! structures, and, indeed, there is yet-to-be-elucidated basic physics

in simple via structures between two thin-film levels of these anisotropic raate-
rials.

In this chapter we will review the low- and high-To electronics and thin film

activities in Japan as compared to the U.S. It will become clear that Japanese

ccpabilities in low-T_ processing and digital circuits far exceed t'_ose in the
U.S. Despite inferior processing capability in tile U.S., low-T_ analog circuit

activity, which is much more emphasized in the U.S., is much advanced ov,-r

the Japanese level. Ill high-T_ activities, significant contributions to advancing
the state of the art in thi:_ films have been coming from both the U.S. and

Japan, but tile U.S. programs have led to more interesting demonstrations of
device structures.

6.2 Low-T Technology

6.2.1 Low-T Superconducting Electronics Programs in
Japan

In the 1970's there were only the beginnings of superconducting electronics

activities in Japan with some activity ()it the Josephson voltage standard and
on mixers, and by the en(! of the decade, activity was beginning on digital

circuits. In the early 19S0's as part of the Agency of Industrial Sciences and

Technology, .Ministry of International Trade and Industry (MITI) project on
high-speed computing systems for future scientific and technological uses, a

coordinated program aimed at developing digital Joseph.,_m technology was

undertaken at the Eh,ctrotechnical Laboratory (ETL) and at Hitachi, Fujitsu,

and NEC. These efforts (involving about 10-15 remarchers per laboratory) were

focused mainly at chip-level technology. A selmratc program outside of MITI

was undertaken at NTT, which was somewhat largcr (at,out 40 pt<_ple) and

included a packaging intercotmect component as well as materials and chip

technology at/tl circuit componevts. The NTT pvogrmn was scaled back to a

research mode shortly after the IBM decision to terminate their progrmn, but
the MITI l}rograln Colttinued at tile four laboratories throughout tilt, 1980's

and has resulted in significant refractory technology and digital circuit d_,vel-
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opments. This MITI program, however, is scheduled to end in March of 1990,

and it is not clear whether or not there will be a follow-on program with a
substantial digital component.

One circuit project in Japan that will clearly continue until 1991 is the five
year ERATO project on the Quantum Flux Parametron, a concept invented
and championed by Professor Goto of the University of Tokyo. The project

was reviewed in a recent JTEC report [218], and thus only an update is offered
here. The Fundamental Properties Section of the ERATO project, located
in space at Hitachi's Central Research Laboratory, has recently reported low

speed operation of an analog-to-digital (A/D) converter[219] and high speed (5
GHz) operation of a 3-cell pulse-counting circuit [220]. This work at present is
aimed at feasibility demonstrations of circuits of not more than approximately i" i
100 gates. The Fundamental Propert-es staff are fecund on confirming the ;,

basic operations of quantum flux parametron circuits and on the issue of in- I

creasing operating margins (symmetry and low noise are essential to operating !
the parametron in its single-fluxon form). Thus, this project does not pxesently
place emphasis on integration at the MSI-LSI level, nor does it provide the sa_ne

circuit pull as the current MITI-spon_red effort. Indeed, the parametrons are

fabricated in the older Nb/Pb alloy technology. Nevertheless, the long term

commitment at Hitachi to this project, as a Japanese-originated exploratory
research direction, seems to he firm with their stated intention to continue after

the 1991 end of the ERATO project.
In April of 1988, MITI started a 10-year project on new superconducting

devices with the following themes: (1) ultra high speed three-terminal devices

and (2) new functional devices. The former inchtdes re,arch aimed at super-

conducting versions of field effect transist ors (FETs ! and superconduct ing base
transistors, while the latter will explore and attempt to exploit mechanisms

like single electron tunneling and localized state tunneling. It was aplmrentl.v
a hotly debated issue whether c_rnot to include advanced Jo_ph_m circuit s in

this project. The decision not to include these is apparently being reviewed in

the light of U.S. proposed consx_rtia initiatives, and the ending in March 1990

of the MITI Jo_phmn Computer Project. There aim appears to be discus-

sion and planning of a follow-on Jo_phmn project that would include both

instrumentatioa and data processing, i

6.2.2 Integrated Thin Film Processes for Josephson Tech-
nology

The absence in .Io_,ph_,ta techl_oh,g.v ,_f a three-terminal transistor-like device

places a premium on controlling the character istics of the two-terminal devices.

Two-terminad <tevic¢,s provide little or n,_ direct i_Jlation betw_m the control
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signal and the controlled signal, deliver minimal power gain, and thus make it

very difficult to create complex circuits. For example, sense gates in memories

can create sustained disturbances of stored data, and only very careful design

with nearly ideal components can produce functioning memories. To implement

such designs requires tight control of signals and of component characteristics.

It must also be borne in mind that the key element of the Josephson junction is

tunnel harrier of thickness 10-20 _,, whose thickness exponentially determines

the maximum magnitude of the Joseph_n current. For these reasons extreme

process control is vital for producing functional Josephson circuitry.

By 1980 when digital Josephson research had begun in Japan, there had
already been much published work on Pb-aUoy based junction technology for
integrated circuits, and work on technologies based on Nb/Nb-oxide/Pb-alloy

and Nb/Nb-oxide/Nb junctions was just beginning to be reported. Most of

the early circuit work had been done at IBM where the Pb-aUoy based tech-

nology was developed [221]. In addition, some circuit work had been done at

AT&T Bell Laboratories, using Pb-alloy based technology,, and all-Nb technol-
ogy explorations took place at IBM-Zurich [222], Spent Research [223], and
AT&T [224]. The early Japanese circuit work at the Electrotechnical Labora-

tory (ETL), NTT, Fujitsu, NEC, and Hitachi utilized Pb-alloy circuitry.
Throughout the 1980's, extensive investigations of alternative ali-refractory

junction technologies were carried out at ETL. By the mid 1980's there were
several successes with demonstrations at ETL of the ha._s for LSI level r('-

fractory technologies employing three different junction technologies: Nb/AI-
oxide/Nb [225], NbN/Nb-oxidc/NbN [226]. and NhN/.MgO/NbN[227 i jun.,--

tions. The original demonstration of high quality Nb/Al-oxide/Nb junctions

was carried out by M, Gurvitch ml(l co-workers at AT&T Bell [224], hut th('
NbN junction work as well as the integrated process develol)ment was pioneer(,d

at ETL [226,227]. Each of these junction technoh)gies has been successfldly u_.d
to make LSl-level digital circuitry at ETL. Among the.,_', how(,ver, the" juncthm

characteristics of the NI)/Al-oxidc/Nb t('chn()h)gy are the n,_()st ,early ideal.

and the processing for Nb is .,_nnewhat siml)ler than that fi)r NbN.

After its development at ETL. the N|)/Al..oxide/Nb tech:lology was quickly

acquir_ by the Japanese COml)anies in the MITl-spon_)red Jo_,l)h._)n Scientific

Computing System project: Fujitsu, NEC, and Hitachi. Each company now

practices this tedmolog_" a¢ the LSl-lew'l ms can be seen in Table 6.1. Typically

the transfer was accomplished very efSck, ntly by having a re.archer from the
industrial company work at ETL for several months to become "steel)ed" in the

technolog O' before bringing it hack to his home firm. The perceived excclh.nce

of this technology, particularly COml)ared to the, Pb-alloy technologies that it

replaced, was undoxthtedly as big a factor in this successfid t(,chnology transfi'r
as was the joint ro,_,arch and d_'velol)mOnt framework of the MITI ,h)sel)h_)n
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Table 6.1: Low-T Jo_,h_n Technology in Japan.

Institution [ Application Junction Lit h,,graphy Chip Wiring References

I Foctm Density Material

F_itsu ] Microprocessor Nb/Ai'_O3/N}, 1.5.m jnts 3,056 gates Nb 1228]

J
2.0t*m wire (24,000 jncts)

_-QUID with "",-"[_/A|_O3/Nb --- 4 jncts Nb [229]

integral feedback

RAM DRO Nb/'AI_O._/Nb 2.5.._ 4 k bit Nb [230]

Hitachi Microprocessor Nb/_/Nb 5.m jnts 2,066 gates Nb (231]
2.5 pm wire

(;ato/Hitacl_ Quantum _lux NbN/NbO:/Pb 5.m jnts _. paxametrons Pb [232]

Paran,etron alloy + 4 SQUIDs alloy

NEC RAM Nb/AI_O3/Nb 4.m } k bit Nb [233]

ETL Multi Chip

Microprocessor

- Arithmetic logic Nb]AI203]Nb 3.0_nt 1273 gates Nb [234]

- Control Unit NbN/MgO/NbN 2.5pro 593 gates Nb [235]

- Instruction ROM NbN/MgO/NbN 3 j,m 1280ce|ls + 789 Nb [236]

gate_

- RAM Nb/AI_O3/Nb 3 .m 1 K cells + 1025 Pb [237,238]

gates alloy

[ Voltage Stand_d Nb/AI_O3/Nb 25 x 40 .m z 2400 jncts -_ [239]

SQUID (;rasll.n<w - NUIrAI._O3/N_ 3.5 .m .... Pb '[2,i0]

t_._ alloy

S-_rf_ -- ' NbN/MgO/NbN _ .5 .m 2 jnts/el x8 .m NbN [24"1]
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Table 6.2: Low-To Josephson Technology in the U.S.t

Imtitution Application Focus Materials Lithography Circuit Density Wiring

U.C. Berkeley Decoder_ A/D converter Nb/AI203/Nb 2-4 I_m 50 gates/chlp Nb

shift r_gister, SQUID
Cornell U. THs receiver with Nb/MgO/NbN 0.25-I_m 2 jncts,/chip Nb, NbN

local oacillator

HP A/D converter Nb/Ai2Os/Nb 2 _m Nb
Hu_es A/D convener NbN/MI_O/NbN 3/Jm 100-200 jncts./chip NbN
HYPRF.,S _mpler, AID converter, Nb/AI2031Nb 2.5 pm 30 jncts./chlp Nb

SQUID NhN/MgO/NhN 100cts./chip
IBM SQUID Nb/Nb2Oa/PbAuln 2.5 .m .,. 64 SQUIDs/chip PbAuln

_t_ejr_ts.
JPL Mixers NbN/MgO/NbN 1 _am 2000 jncts./chip NbN
NIST voltage standards, SQUID, Nb/AlaO3/Nb 2 .m 19,000 jncts./chip PbAuh

A/D ccaiverter, fast
counter

Lincoln integratinl_ correlator Nb/Nb205/Pb 5#m 1000 jncts./chip Pb, Nh
SUNY Microwave/sub nun Nb/AI203/Nb 1jam 40 jncts./chip Nb
Stony Brook source with mixer
TRW A/D converter Nb/Ai203/Nb 2/4 _m 50/100 gates/chip Nb
Univ. of Utah SQUID, receiver, NbN/MgO/NbN 2 .m 16/chip NbN

comparator, obcillator
Westinghouse shift register Nb/AI203/Nb 2/5 .m 50 jncts./chip Nb
U. of Wisconsin Microwave amplifiers, Nb/Nb-oxide/Pb 2 .urn 5 devices/chip Pb, NbN

oscillators NbN / MgO/N bN

Entries are based on a telephone survey of current research work.

Computer project. The Nb/Al-oxide/Nb technology is now also practiced at
lower scales of integration at other laboratories throughout Japan (in univer-
sities and in companies witil smaller efforts, as for example, a SQUID-sensor
effort at Mitsubishi). Furthermore, its use is becoming widespread in the U.S.
(for example, at Hypres[242]) and in Europe as well, though typically at lower
levels of integration, as can be seen in Table 6.2. ETL has hosted a number of
overseas visitors who have worked with the Josephson technology group. The
transfer of their technology to the world seems to be in keeping with ETL's
goal of being a world-class research laboratory.

An additional thrust of the ETL process development work was to replace
Pb-alloy wiring with refractory (Nb or NbN) wiring on the upper levels of
Josephson integrated circuits, and in particular to develop processes that re-
sulted in flat ("planarized") surfaces at the upper levels [226]. This was needed
to improve the yield of upper level wiring against interlevel shorts and line
breaks, but was also thought to lay the basis for eventual stacking of Josephson
circuits in what might become three-dimensional integrated technology. (There
has also been a MITI thrust at developing three-dimensional integrated tech-
nology.) Some of the planarrizatiot_ effort has been picked up at the companies
[243], but its impact appears to be less pervasive. For circuit demonstrations,
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Table 6.3: Selected examples of Nb/A1203/Nb digital integrated circuit devel-

opments at Fujitsu.

Year Circuit Speed No. Gates Junction References
Diameter

c

i: 1986 16 bit multiplier critical 1.1 ns 828 2.5 #m [244]
path model

1987 4 bit microprocessor 770 MHz 1841 2.5 ILm [245l
1987 16 bit arithmetic logic unit 860 ps 900 2.5 #m [246]

1988 4 kbit static memory 590 ps 4k-bit 2.5 #m [230]

! (destructive readout,
! random access)

1989 4 bit microprocessor 1.1 GHz 3056 1.5 _m [228]
+ 4 bit multiplier
-t- 12 bit accumulator

-t- 8 kbit memory read-only

the use of Pb-alloy interconnection was in some cases described _s being more

expedient than using the refractory planarization processes involve. Beyond

demonstrations of one junction stacked on a second, there does not appear

to have been much effort devoted to functional three-dimensional Josephson

integrated circuits.

6.2.3 Digital Circuits - A Japanese Domain

Since the nearly simultaneous terminations of the IBM, AT&T, and Sperry

digital Josephson efforts in 1983, there has been virtual no digital Josephson

R&D in the U.S. In Japan, there has been substantial progress in logic circuitry

beyond IBM's 1983 level of 1000 gates-per-chip. There has also been progress

in Josephson circuits and memories, but when measured against the 1983 IBM

projection of a subnanosecond 4K bit memory chip by 1985, and when measured

against semiconductor performance, these results have been less impressive.
The pace in Josephson circuitry over the past few years has been set by

the group at Fujitsu. Table 6.3 summarizes the circuits they have reported, all

using Nb/A1203/Nb-junc_;.on technology. The first Josephson microprocessor,

reported at the International Solid-State Circuits Conference (ISSCC) in early

1988, attracted the most attention [245]. This microprocessor, pictured in

Fig. 6.1(a), was functionally similar to the 4-bit AM-2901 silicon microprocessor

manufactured by Advanced Micro Device Inc.[247]. It had a total of 1841 gates,

48 bits of random access memory, and a few registers on a 5-mm by 5-mm
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(,_ Josephson 4b Microprocessor

L(b i::

I/
'1

i• m _ _

(_,) Josephson 4bit Processor

i Figure 6.1: Fujitsu microprocessor chips made (a) in 1988 {245] and (b) i t989

[228] (see text).
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chip. All functions in the microprocessor were verified to work with a pattern
generator running at 100 MHz. Pulse generators were used to verify that the
41-gate critical path operated up to 770 MHz. Individual gates in the critical
path were working with an average of 10-12 ps delays, with a 500£ duty cycle
and some propagation delay comprising the remainder of the 1.3-ns cycle time.
The Fujitsu Josephson group compared their cycle time to the 72-MHz clock
rate of a GaAs version (enhancement/depletion process) of the same chip [248].
A somewhat less favorable point of comparison would be to a 128-MHz, 32-bit
GaAs heterojunction-bipolar-transistor (HBT) reduced-instruction-set (RISC)
microprocessor [249]. This chip, reported by Texas Instruments at the 1988
International Solid-State Circuits Conference (ISSCC), contained more than
12,000 gates and had a critical path length of 30 gate delays.

In May 1989 a.t the VLSI Symposium in Taiwan, Fujitsu reported[228/on

i an extension of their 1988 Josephson microprocessor in which the 1988 micro-
processor was shrunk to about a quarter of its earlier size and combined with
multiplier circuitry and 8K bits of read-only memory (ROM) on a 5-mm by
5-mm chip, see Fig. 6.1(b). The evolution from the 1988 chip to the 1989 chip
was quite substantial. The clock frequency increased from 770 MHz to 1.1 GHz.
The technology evolved from 2.5-pm minimum feature sizes to 1.5/_m, and the
number of Josephson junctions increased from 5,011 to 24,000. In addition to
the microprocessor core which has a 8-function arithmetic logic unit (ALU)
and a 64-bit RAM, the chip also had a 256 by 32-bit instruction/data ROM, a
4-bit by 4-bit multiplier, a 12-bit accumulator, and a sequencer.

The Fujitsu group has recently completed the design of a 10,000 gate mi-
croprocessor chip which is to include 4K bits of random-access memory, a more
flexible sequencer, and, presumably, the 16-bit arithmetic logic unit and multi-
pliers that they earlier demonstrated. They expect to complete the fabrication
and test of this version in 1989.

The other Japanese Josephson groups are also working on microprocessors.
Hitachi[231/at the 1989 ISSCC reported a microprocessor of complexity and
performance comparable to the 1988 Fujitsu microprocessor. ETL has reported
experimental rcsults on the four chips that comprise its targeted microcomputer
system: an address control unit [235], an instruction memory[236/, an arithmetic
logic unit[234/, and data memory[237,238/.

The progress in memory technology has been less impressive. It can be
seen in Table 6.1 that ETL, Fujitsu, and NEC have all reported experimental
results on Josephson RAM chips. None of tile chips reported was fully func-
tional. However, the functionality of each component type in the chips was
demonstrated, and lithographic defects contributed to the lack of fuli function-
ality. The Fujitsu and NEC results included access time measurements, with
a reported minimum access time of 590 ps for the 4K bit Fujitsu destructive-
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readout chip, and 570 ps for the NEC 1K bit nondestructive-readout RAM.
ETL estimated ,_ 500-ps access time from measurements of the component

delays involved in an access for their destructive readout memory. Both the

Fujitsu and ETL memories compensated for the destructive readout with cir-
cuits that automatically rewrote the data after readout. The Fujitsu, NEC,

and ETL chips dissipated 19, 13 and 1.9 mW, respectively.
These access times, while impressive, aie comparable to those now being re-

ported in comparable density high speed semiconductor memory. For instance,

in 1986, 1.0-ns access times were achieved in a 5K-bit static "'andom access

memory (SRAM) in silicon bipolar-transistor technology [25uj, _.,," by 1988 this
had evolved to a 0.85 ns access time in a similar silicon bipolar RAM [250,251].
Half nanosecond access times v.ere demonstrated in a room-temperature 1K

by 4-bit GaAs high electron mobility transistor (HEMT) SRAM in 1987 [252].
In contrast to +he situation with semiconductors, there is no clear approach to

achieving high speed Josephson memories with densities beyond 4-8K bits/chip.

Without an appropriate memory technology, a general-purpose computer sys-

tem cannot take full advantage of the high-speed, low-power Josephson junction

logic.
For this reason, it is not at all clear whether low-To electronics will be com-

mercialized in Japan, at least in the digital form which has been the thrust

of the effort that MITI partially funded. There is no evidence of any immi-

nent commercialization because, for instance, there appears to be no effort in

Japan presently directed at system level issues such as multichip intercounec-

tion and cryogenic packaging. Dr. K,xwabe, Chief Researcher of Hitachi Central
Research's Second Department and Director of Hitachi's recently formed Su-

perconductive Electronics Center was more optimistic than NEC or Fujitsu

management about the future of low-To digital circuits. He envisioned at least
a portion of a future-generation supercomputer as being superconducting. He

argued that silicon-an_', gallium-arsenide-based devices would ultimately reach
their scaling limits, and R&D in superconducting digital electronics should be

continued in order to prepare for that opportunity. Fujitsu and NEC are less

certain, and this difference may be a result of their research for "tile day aher

tomorrow" objectives, as opposcd to Hitachi's rescarch for "ten years out." Dr.

K. Kurokawa, Manager of Fujitsu's Atsugi Laboratory, was sympathetic to his
researchers' desires to continue low-To circuit development, but appeared likely

to reduce the activity upon the cessation of MITI funding. The Fujitsu low-T_

team, which was quite open with the JTEC panelists regarding, future plans,

had already been reduced in numbers in order to provide researchers for high-

T¢ efforts. The Fujitsu team was clearly concerned about the stability of their

low-T¢ activity. NEC's low-T_ memory effort already appears to be at least

temporarily scaled back.
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6.2.4 Low-To Analog Devices and Circuits - A U.S. Do-
main

In contrast to the situation with digital Josephson electronics, the U.S. ha,s

remained strong in analog Josephson electronics and maintains a leadership

position. This continues to be the case, although the leadership is threatened

by the ready availability of superior thin film technology in Japan and the
increasing analog device sophistication of Japanese superconducting elec_,ronics
researchers.

All of the U.S. activity in low-To electronics, listed in Table 6.2, is seen to be

focused on analog applications. The activities are spread among a fair number

! of institutions and the driving factors come from diverse, longer term com-

i mercial, scientific, and defense interests. The development foci include: ultra-
sensitive scientific and biomedical instrumentation; low-noise, high-frequency

r receiver front ends and wideband signal processing; more reliable and 2ractical

i voltage standards; sensitive, fast sampling oscilloscopes and transient recorders;

:! and fast, accurate analog-to-digital (A/D) converters.

The high-frequency applications are principally driven by DoD receiver ap-

plications, although radio astronomy applications are also a driving force for

receiver development. The DoD-directed work includes '_he high frequency
Josephson sources research at SUNY Stony-Brook, parametric amplifier re-

search at TRW, integrating correlator work at MIT-Lincoln Laboratory, the
A/D converter work which has been carried out at U.C. Berkeley, TRW, NIST,

and other U.S. laboratories, and passive analog signal processing involving

filters and resonators made from low-loss superconducting transmission lines,

which has been pioneered at MIT's Lincoln Laboratory. This activity, as well as

the Hypres t Tort to develop a general purpose high-speed sampling oscilloscope

for the commercial market, remains almost an exclusively U.S. undertaking.

Research on SQUIDs, voltage standards, and the superconductor-insulator-

superconductor (SIS) mixers are all carried out internationally, with U.S. re-

searchers generally leading the way. In SQUID instrumentation, the U.S. has

consistently led both in laboratory innovations and in commercial products.

However, the commercial U.S. product technology, which is a hybrid of a thin

fi]m sensor and a wire wound coupling structure, has considex-ably lagged the

thin film devices made and used in laboratories like those at IBM, U.C. Berke-

ley, and NIST. Continued U.S. product leadership in these v,reas is threatened as

the Japanese-developed refractory thin film technology becomes readily avail-

able throughout the world and the device sophisticatiol_ of the Japanese them-
selves ;ncreases. This is true for both the lowest, noise instruments, as well as

for more special;zed niches. ETL in conjunction with the Chiba Institute of

Technology, for instance, has demonstrated respectable operation of an all NbN
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SQUID at 10 K [241]. The commercial market place, with recent growth in

demand for magnetic susceptometers and looming large scale biomagnetic in-

strumentation, is also become more active internationally. The Japanese Hoxan
Company is now delivering susceptometers in Japan, statedly in response to

poor service support for U.S. products in Japan. In addition, the Siemens

corporation has recently described a 30-channel biomagnetic instrument[253]

with advanced thin film SQUIDs made using Nb/Al-oxide/Nb technology. This
instrument is apparently a product preprototype.

Over the last decade, led by a series of experiments done both indepen-
dently and jointly among researchers at NIST in the U.S. and the PTB in West

Germany, the voltage of practical Josephson standards has been raised from

5mV to 1 V [254,255], and very recently to 10 V [256]. These developments

depended on deepened understanding of the physics of r.f.-driven Josephson
junctions, on careful microwave engineering, and on fabrication of large, uni-

form arrays of Josephson junctions. This combination of skills residing at the

NIST laboratory in Boulder have allowed them to lead in this activity. NIST

demonstrated the first 1-V Josephson standard, and is the only standards lab-

oratory to have made and operated 10-V ,Iosephson standards. Furthermore

NIST has fabricated chips for and aided the establishment of series array voltage
standards operating at approximately 20 government and industrial standards

laboratories, with four operating systems being the 10-V standard. Commer-

cial products based on this development are possible, but U.S. leadership is

clearly threatened by the availability of superior thin film Josephson technol-

ogy in Japan. Researchers at ETL have already successfully fabricated and

demonstrated a 1-V standard [239].

The discovery of high temperature superconductivity has substantially raised

the visibility and offcrs to increa: the practicality of small scale superconduct-

ing analog components and circuits. This creates a potential advantage for U.S.
device experts to lead the way in exploitiug the new materials. At this time

it does appear that U.S. (and European) high-T_ device demonstrations have

been more impressive, as discussed in the next sections of this chapter. The

present U.S. advantage is precarious, however, if superior low-T_ technology

remains the norm in Japan, and if the analog device expertise there grows in

conjunction with overall Japanese superconducting fihn and electronics devel-
opments.
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6.3 High-T Technology I
6.3.1 Introduction

The potential electronic circuit applications of high-T_ superconductors will

require first that these materials be available in thin-film form and further
that the substrates, superconducting films, and associated normal metal and

dielectric films be amenable to processing by methods of not much greater cost

or complexity than those practiced in semiconductor and low-T_ integrated

circuit technologies. The chemical complexity of the high-Tc maZerials is on
a level with the most difficult compound semiconddctor technologies and it is

expected that a long and arduous development will be required to achieve multi-

level high-T_ superconducting integrated circuits. Single level devices which

rely on low microwave losses such as simple interconnects, microwave filters,
etc.-may be realized within the next few years. More intricate applications

will require substantial time for the development of multi-level technologies, :i

especially the reproducible engineering of Josephson devices.
Overall it appears that contributions to the development of high-T_ films

and electronics, described in the rest of this chapter, have been coming at a

roughly equal pace in Japan and the U.S. This can be seen in our attempt
in Table 6.4 to list some of the highlight "first" accompl_shme,ats in supercon-

ducting films since the discovery of high temperature superconductivity.
Some d;fferences in emphasis can however be detected m the two countries.

A number of the Japanese film accomplishments (for instance, high J_ in three

films systems and successful chemical vapor deposition (CVD) and layer-by-

layer sputter deposition) seem to reflect a greater emphasis on the meticulous

persistence it takes to optimize processes that are at first difficult to bring under
control. On the other hand, a number of the U.S. accomplishments relativ.g

to prototype devices reflect a closer coupling between de_'ze and materials

research, and the greater U.S. experience in analog applications of (low-T_)

superconducting fihns. In the following sections we describe in more detail

some of the high-T_ film and device activity in Japan and the U.S.

There are also what might be termed "cultural" differences between the in-

dustrial high-T_ film and electronics research in the two countries. Besides the

largest integrated electronics manufacturers who are active in both countries,

in Japan there is much greater activity in medium-sized electronics companies,
e.g., OKI, Sanyo, Sharp, Sony, and Sumitomo Electric. On the other hand, the

U.S. has w.'ry small specialized start.up companies, e.g., BTI, Hypres, Con-

ductus, Superconductor Technology Inc. (STI), for which there is no Japanese

counterpart.
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Table 6.4: High-T_. superconducting thin film and device highlights.

Achievement Organization Dater Reference

First high--Jc film at 77K IBM 5/87 [257]

(YBaCuO)

First Jc > 106 A/cm 2 at 77K NTT 7/87 [17]

(YBaCuO)

First in-situ growth (YBaCuO) Cornell 8/87 [258]

First uhra-thin (100 ._,) film Kyoto Univ. 6/88 [18]

(YBaCuO, T_ = 82K)

st high-J_ ;.n-,_itu lasm- Bellcore 6/88 [20,259]

deposited film

High J_ in all high-T_ film Sunlitomo ,_/88 [260]

materials (T1.... Bi...,Y...)

New perovskite substrates IBM & TRW 9/88 [261,262]

(LaGaO3, LaA103)

Synthesis of n = 3, 4, 5 Matsushita 9/88 [263,264]
BiSrCaCuO film_

First low no!_e SQUID (Tl...) IBM 11/88 [265,266,267]

First high-J_. CVD film Tohuku Univ. 11/88 [19]

Film with low microwave Siemens 11/88 [268]

losses (86 GHz, 77K) & WuppertM

First high-J_ film ,,t 77 K Belleore & NEC 12/88 [269]

on silicon with buffer layer

Picosecond pulse propagation AT&T 3/89 [270]

First two-level high-Z Stanford Univ. 4/89 [271]

device (microstrip resonator) & HP

High-Q cophmar transmission line Siemens & Tech. 5/89 [272]

resonator (Q 14x higher that fi_r U. of Munich

Cu at 9 GHz, 77K)

t Paper submissiml date
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Table 6.5: Thin film ReBa2Cu307 critical current density achievements at 77K.

Jc (A/cm 2) Organization Dater Reference
1.0 x l0 s IBM 5/87 [257]
1.8 x l0 s NTT 6/87 [17]
2.5 xl0 s Sumitomo Electric 2/88 [273]

4 x l06 U. ofKyoto 6/88 [18]

4-5 x l0 s Bellcore-Rutgers 8/88 [20]

5.5x106 Karlsruhe 11/88 [274]

t Paper submission date.

6.3.2 High-Tc Thin Films

By many measures, thin film high-T¢ materials research in Japan is on par with

that in the U.S., and the activity in these two countries appears to be leading
the world. Table 6.4 includes about half a dozen highlight accomplishments

relating to fihn growth from each of these two countries. Lists such as those
in Table 6.4 are subjective and inevitably emphasize highly visible accomplish-

ments, and may tend to underemphasize influential, sustained, systematic work

that necessarily takes a longer time to complete and report. Nevertheless, this

list which tries to report significant milestones in superconducting films and

devices at 77 K will serve our purpose of providing one comparison point of
work between the two countries.

Early thin film accomplishments relate to simply learning to grow high qual-

ity films, with an early measure of film quality being maximum critical current

density. Because of the large anisotropy of the high-T_ superconductors and

their unfavorable grain boundary properties, high current density appears to

largely reflect the degree of single crystallinity and orientational alignment in
these materials. Table 6.5 lists, to the best of our knowledge, current density

records in ReBa2Cu307 films and the table shows, as did Table 6.4, that signif-

icant steps were first taken ill Japan and the U.S., with the present record of

5.5x106 A/cm 2 first being reported from Europe, by the Kernforschungszeu-
trum in Karlsruhe, FDR [274]. (A number of laboratories have now reported

fihns with comparable supercurrent densities.)

A more sensitive gauge of the quality of fihn growth might be gleaned from

the ability to grow ultra-thin films. To illustrate this point, we present in

Fig. 6.2 the resistive transition of a number of sub-100-A YBa2Cu307 films
on SrTiO._ substrates. Figure 6.2(a) shows _hat zero resistance was achieved
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Figure 6.2: (a) Relative resistivity V(_I'SllS tenli)era.ttlr(_ for all oxidation tree:ted

(001) YBaCuO ultra-thin film (100._) grown by electron beam evaporation ill
an oxygen plasma [18].

(b) Normalized resistance R(T)/R(273) versus temperature for YBaCuO films

of different thicknesses on (100) SrTiO3 substrates. The accuracy of the thick-

ness determination of the ultrathin films is a])ollt 10% [275].

(c) Transition curve of resistance versus temperature for an ex('el)tionally g()o(l

2-nra thick YBaCuO fihn on {100) SrTiO:_ [275].
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at 82 K for a 100 ._ film crystallized as grown in situ in an e-beam depo-

sition chamber with an active oxygen source at the University of Kyoto [18].

Figure 6.2(b) shows examples of even thinner films grown with inverted cylin-

drical magnetron sputtering equipment at Karlsruhe [275]. Finally, Fig. 6.2(c)
shows a 20/_ Karlsruhe film, approximatedly two unit cells of YBaCuO thick,

with a substantial portion of a superconducting transition occurring above 60

K. That these ultra-thin growth accomplishments first occurred by e-beam and

sputtering in the countries in which they did is a curious story that illustrates
the value of sustained research in a given specialty. E-beam deposition of
YBaCuO has been a much more widely practiced method in the U.S., with

earlier notewprthy achievements coming from IBM [257], Stanford University

[276], Cornell University [258], AT&T Bell Laboratories [277], and the Univer-

sity of Texas [278], for example. However, it turns out that the group at Kyoto

University led by Professor Bando has been engaged in the epitaxial growth
of oxide and selenide films by reactive evaporation for many years, including

work on artificial superlattices of magnetic materials like CoO and NiO [279].

Single source sputtering, on the other hand, is a deposition technique which
has been overwhelmingly emphasized in Japan. For example, the group at

Sumitomo, using sputtering, was the first to produce films with J_ above 106
A/cm 2 for all of the materials systems with transition temperatures above 77 K

[260]: YBaCuO, BiSrCaCuO, and T1BaCaCuO. However, the Karlsruhe group

led by Dr. J. Geerk, is expert in both sputtering and surface characterizations,

and designs and builds unique, sophisticated cylindrical magnetror, sputtering

guns, allowing them to p,'oduce very thin films of high quality.
One ofte1, considered question is which method of film growth is "best." It

turns out that many methods, practiced by expert research groups, have been

made to work very well, as the above examples illustrate. Overall, however,

there has been greater eml)hasis on pulsed laser deposition and multi-source

evaporatio,1 and sputteri,_g in the U.S. and greater emphasis on single-source

sputtering and CVD in Japan. It is interesting to note that sputtering and

CVD are generally regarded as processes more suited for scale-up and manu-

facturing, while multi-source deposition and pulsed laser deposition are more

flexible processes, especiMly useful for doing research on relatively smaller area

samples. CVD is the one method that has lagged in yielding high quality su-

perconducting ,naterials. But recent, results at several Japanese laboratories

indicate that persistence with the CVD method is paying off. Both Tohoku

University[19] and OKI[280] have now reported films by CVD with current
densities in the 106 A/cm 2 range. Figure 6.3, reproduced from an OKI report
at a devic(_ and fihn internatio,ml workshop, shows the trends in producing high

current density films, and how by this measure of fihn quality, CVD films are

! now approaching critical current density levels of physically deposited fil,ns.
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Figure 6.3: Improvements in critical current densities Jc of high-To supercon-

ducting thin films over timc by different proccssing methods and materials.

The ticks on the time axis denote ttle beginning of each year [280].
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Layer-by-layer epitc.xy may be an even more elusive long term film growth
technique. There are in both the U.S. and Japan the beginnings of such efforts,
which necessarily have a longer incubation period because of the complexity
of the equipment involved and the uniqueness of high-To oxide materials in
this context. The only concrete results with this approach appear to be the
successful layer-by-layer synthesis of the 3, 4, and 5 CuO layer-per-unit-cell
BiSrCaCuO compounds at Matsushita using, not MBE-like equipment, but a
rotating aperture moving over four sputtering targets [263,264].

The patterning of films appears to be on a roughly equal footing in the two
countries. NEC's fabrication by focused ion beam etching of a 0.8-/zm-wide by
2ram-long line of magnetron-sputtered YBaCuO on MgO with a zero resistance
transition temperature of 78 K is probably the longest fine line superconduc-
tor yet produced [281], but comparably fine feature sizes are being achieved at
a _,umber of U.S. laboratories. In both countries there are now only the be-

ginnings of the selective etching and multi-level deposition processes that will
eventually be needed for complete device fabrication.

An important issue for high-T_ microelectronics applications is that of the
substrates used for thin films. It does not appear that research and develop-
ment of substrates is as intense in Japan as in tbe U.S. Little or no effort
on new substrate materials such as LaGaO31261] or LaA1031262] was discerned
during our visits to Japanese laboratories, in contrast to the very active state
of substrate research in the U.S. One example, however, of novel "substrate"
work in Japan involved CVD buffer layers on silicon which is an outgrowth
of earlier Japanese research on approaches to silicon-on-insulator technology
and piezo-electric devices combined with silicon [282]. Film growth by sput-
tering was investigated by NEC using a two-layer epitaxial buffer on silicon,
MgA1204/BaTiO3 [283]. The two layer buffer was needed to provide for a lat-
tice match and a chemically compatible substrate for film growth. Later, these
buffer layer substrates supl_lied to Bellcore in a collaborative experiment [269]
resulted in the achievement of the first respectable current densities at 77K on
a silicon substrate, Jc = 8x10 s A/cm 2.

An area of research that touches on both substrates and patterning, and
also transcends the boundary of film materials and device work is the single
grain boundary studies performed at IBM on epitaxial films grown on SrTiO3
bicrystal substrates [284,285,286]. So far this type of interdisciplinary study
has remained unique to this laboratory.

6.3.3 High-T_ Devices

In contrast, to the roughly comparable status of fihn growth activity in the U.S.
and Japan, the U.S. h:_s tended to outpace the Japanese in accomplishments
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related to demonstrating potentially useful high-T_ devices or device-related

i properties. This is reflected in the greater number of entries for U.S. work in
the bottom half of Table 6.4, which is starting to reflect steps towards demon-

strating useful prototype superconducting devices in the areas of SQUID mag-
n.'tic sensors and of microwave electronics. This present favorable position of

U.S. high-T_ device-related research seems to be a reflection of the greater U.S.
emphasis and experience with analog superconducting devices and also, per-

I haps, of the broader educational background of the U.S. research community.
i While it is a big advantage to have analog superconducting electronics expertise
_, in order to contribute to the presently active areas of high-T_ device research,

i this is not true for digital superconducting electronics expertise. Low-T_ digital

i Josephson research activity is at a much greater circuit and integrated process

i complexity level than is possible to practice at present in high-T_ research. For
I Japanese low-T_ device research groups focused on digital integrated circuits,

it is thus an enormous transition to be able to contribute to the materials

; and device advances needed at the present stage of development of high-T_
superconductivity. As a result, the digital Josephson groups in Japan have

by-and-large not been the source of the major high-T¢ accomplishments in

Japan.
As described earlier in this chapter, there is research on low-To SQUID

sensors in both the U.S. and Japan, but the U.S. has played more of a lead-

ing role in this research. In the early days of high-T_ superconductivity, there
were respectable early demonstrations of d.c.- and/or r.f.-SQUID functionality
from a number of laboratories in both the U.S. and Japan as well as in other

countries. Among these early achievements, the highest operating temperature
of a SQUID appears to remain at the 98.6 K value reported for a Sanyo T1-

BaCaCuO device in June 1988 [287]. For the most part, however, the more

meaningful systematic work has come from U.S. laboratories. Researchers at

U.C. Berkeley and Stanford have collaborated on flux noise studies of high-T_

[ films that might be used in devices and have shown that higher quality films (as

judged by epitaxy and current density)have lower flux noise [288,289]. IBM
i researchers in Yorktown and Almaden have demonstrated[265,266,267] a basic

single-level SQUID employing naturally-occurring grain boundaries in T1Ba-
CaCuO films with an energy sensitivity of 10-29 J/Hz at 10 Hz and almost

i ideally low noise (for the given device size at 77 Is:) above about 1 kHz, a noise

level that appears adequate for many applications [290]. Recently workers at

i: Yoko_awa Electric [291] have reported on a T1BaCaCuO SQUID, similar to

the ol_e at IBM, with noise approaching that of the earlier IBM report. The

road to useful commercial SQUIDs will be a long one, with mcticulou.¢ thin

film process developments being key for further developments. For iqstance,

still lacking are demonstrations of multi-h.'vel coupling structures and of the
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fabrication of reproducible Josephson elements (of some type).
In the case of high frequency properties of superconducting film devices,

there has been little Japanese activity, although there is considerable U.S. and
some European activity. In this area, the first demonstration of losses in a
high temperature superconductor that are far less than those attainable with
cooled normal metals ca_ne from measurements at Wuppertal of films grown by
pulsed laser deposition at Siemens [268]. A number of U.S. laboratories have
constructed resonators with one or more superconducting layers. With regard
to devices made with films, researchers from Stanford University, working whh
Hewlett Packard, studied the temperature dependence of the penetration depth
in what appears to be the first experiment with an all-high-T_ microstrip (two-
levels of superconductor) resonator [271]. In a collaboration between SRI's
David Sarnoff Laboratory, Rutgers, and Bellcore, a filter with both supercon-
ducting and normal metal films was constructed with losses at 77 K lowet than
are attainable with normal conductors alone [292]. MIT Lincoln Laboratory
and AT&T Bell Laboratories reported [293,294] the first loss data at 77 K in
an all-high-T_ stripline (three levels of superconductor) resonator that were
significantly below those possible with cooled normal metals. For very short
pulse propagation there have also been a number of demonstration experiments
in the U.S. Researchers at Cornell University and the University or Rochester
first demonstrated that high-T_ transmission lines could maintain the fidelity
of sharp risetime pulses [295], and workers at AT&T recently succeeded in
demonstrating lower loss picosecond pulse propagation on a YBaCuO coplanar
strip line at 77 K than was possible with a gold line [270].

We saw no evidence in Japan of the superconducting infrared detector re-
search that is active in the U.S. So far there have been no substantial device

demonstrations at 77 K resulting from this work, although research has in-
dicated that bolometric applications at 77 K appear feasible [296]. Whether
or not nonbolometric devices at 77 K will be passible remains a controversial
subject.

6.4 Concluding Comments on Electronics

Overall, it might be said that the U.S. and Japan are at roughly equal strengths
in their superconducting film and electronics research. The research emphasis in
the two countries is substantially different, however. In low-T¢ superconducting
electronics Japan has for tile last 6 years contiaued a strong digital circuits effort
and this has resulted in substantially more advanced low-T_ processing there.
Of special note are recent laboratory demonstrations of 4-bit digital Joseph: ,on

: microprocessor chips that are much more complex than any low-T¢ circuits
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being attempted in the U.S. The U.S., on the other hand, has had a much

greater emphasis on analog superconducting circuits, and enjoys a substantial
research lead in a variety of low-T_ superconducting analog circuits. In the

high-T_ areas, the overali thin film growth activities in the two countries are

roughly on a par with each other, but the U.S. efforts seem to couple these
film activities more effectively to prototype device demonstration efforts. This

may reflect a broader outlook and educational background on the part of U.S.

researchers, oi may be just a reflection of the fact that the early thin film high-

Tc devices are analog devices with which U.S. research groups have substantially

greater experience. In many cases, low-T_ device experience seems to carry over

well ini,o high-T_ device research.

In general, it is difficult to identify an ovcr-riding application theme for

high-T¢ electronics research in Japan. It appeared that many Japanese lab-
oratories were willing to make long-term commitments to thin-film research

without sharply defined applications goals. The assessment of the potential of

high-T_ electronics applications given by both university and industrial labora-
tories was rather pensive, stressing the likelihood of a long development cycle.

Laboratories doing film work either articulated no specific application goal, or

referred to rather general application goals in the passive device area -. such

as low loss, high frequcncy interconnections of high electron mobility transis-

tors (HEMTs). Perhaps this is the most distinguishing i'eature of the Japanese
efforts relative to U.S. efforts in thin film electronics - strong commitment to

materials synthesis projects even in the absence of short-term devicc or appli

cations goals.
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A.1 Biographical Sketches of JTEC Panel Mem-
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A.I.1 Mildred S. Dresselhaus

Mildred S. Drcsselhaus is an Institute Professor of Electrical Engineering and
Physics at the Massachusctts Institute of Technology, and a former Director

of thc Center for Materials and Engineering at MIT. She received her Ph.D.

degree from the University of Chicago in 1958, and joined the MIT faculty in

1967. Shc has bcen active in the study of a wide rangc of problems in the

physics of solids, including semimetals, graphite and other layered materials,

intcrcalation physics, and recent.ly has returned to the study of superconduc-
tivity, the subject of her Ph. D. Thesis. She has served as President of the

American Physical Society (1984), and is a member of the National Acadenly

of Engineering and the National Academy of Sciences, and has served as a
Council Member of both Academies.

A.1.2 Robert C. Dynes

Robert C. Dynes is currently Director of the Chemical Physics Research Lab-

oratory at AT&:T Bell Laboratories. This laboratory has the responsibility for

research in the area of the l)hysics of new materials and novel configurations

of materials with potential technological relevance. Studies in this laboratory
range from new electronic materials to photon, electron and ion beam inter-

actions with solids and liq,fids. His l'ersonal research interests includ.e studies

of electron prol)erties and transi)ort in semiconductors and metals including

superconductors. His work has eml)raced such l)henomena as the metal insu-

lator transiti(m, eh'ctr,m localization, strong coupled superconductors and the
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low temperature thermodynamic_ of solids and liquids. Dynes came to Bell

Laboratories in 1968 following a Ph.D. Jr. physics at McMastet University. In
1974 he was appointed Head, Semiconductor and Chemical Physics Research

Department. In 1981, he became Heat/, Solid State and Physics of Materials
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Fellow of th,- American Physical Society, a Fello_¢ of the C,'madiaa'_ Institute fc,r
Advanced Research (CIAR) and sits oll divisional review committees for Oak

Ridge National Laboratory, Los Alanlos National Laboratory, and the National
Research Council of Canada and sits cn the Advisory Board for the Alfred P.
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elected to the National Academy of Sciences.

A.1.3 William J. Gallagher

William J. Gallagher is a Research Staff member at the IBM Thomas J. Watson
Research Center. After receiving his B.S. in Physics summa cure laude from

Creighton University in 1974. and his Ph.D. in Physics from MIT in 1978,
he joined IBM. For his first five years at IBM he worked on the scientific and
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that program later in 1983, he became manager of the Exploratory Cryogenics
research group, the position he now holds. Dr. Gal!agher's research activities
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devices. Dr. Gallagher is a member of the American Physical Society and
the IEEE. He has served as Assistant to the Chairman of the APS Forum on

Physics and Society, and is currently on the Board of Directors of the Applied

Superconductivity Corporation. He has additionally served on study panels

convened by the National Research Council, the National Science Foundation,

the Office of Naval Research and the Office of Technology Assessment. He is on
the editorial board of the Journal of Superconductivity and on the Assessment

Panel of the Center for Electronics and Electrical Engineering of the National
Institute of Standards and Technology.

A.1.4 Paul M. Horn

Paul M. Horn is Director of Physical Sciences in the IBM Research Division,

Thomas .]. Watson Research Center in Yorktown Heights, NY. Ite graduated

from Clarkson College of Technology and received his Ph.D. degree from the
University of Rochester in 1973. From 1973 to 1979 he. w_s Assistant and

Associate Pr(,fessnr of Physics at the University of Chicago. He joined IBM
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in 1979 as a research scientist and was appointed Acting Director of Physical
Sciences in 1987 and Director in 1988. Horn has worked on a wide variety of

problems in solid state physics, including, surface physics, critical phenomena,

phase transitions, the structure of quasicrystals and high temperature super-
conductivity, and has over 85 technical publications. He is a member of the

American Physical Society Planning Comnfittee, the National Steering Com-
mittee for Advanced Neutron Sources, and the Executive Committee of the

Argonne Advanced Photon Som'ce Users Organization, among others, and is
also a former Associate Editor of Physical Review Letters. Horn was an NSF

Graduate Fellow, was an Alfred P. Sloan Research Fellow in 1974-78, is a Fellow

of the American Physical Society (APS), and in 1988 was elected to the APS
Panel on Public Affairs. In 1988 he was recipient of the Bertram Eugene War-

ren Award given by the American Cryst-!lographic Association for his studies
of two-dimensional phases and phase transitions in adsorbed layers.

A.1.5 John K. Hulm

Dr. John K. Huhn obtained his B.S., M.S. and Ph.D. in Physics at Cambridge

University, England, 1941-1949. He served as a radar officer at the Royal Air-
craft Establishnaent, Farnborough, 1943-1946. tie was appointed Union Car-

bide Fellow at the University of Chicago in 1949 and Assistant Professor in

1951. He joined the Westinghouse Research Laboratories in 1954 and served

tile company ill research and management positions until partial retirement

; in 1988. Dr. Hulm's last full-time management appointment was Director of
Corporate Research. He was appointed Chief Scientist Emeritus in 1988. Dr.

; Hulm has 36 years of experience in teaching physics and research m fundamen-

tal properties of materials primarily through investigations at very low tem-

perature, including thermal conductivity, dielectric properties, electrical con-

ductlvity, supercorlductivity, ferromagnetism, adsorption, and diffusion. Under

Dr. Hulm's direction, Westinghouse succeeded in 1961 in developing the first

extr.rmely high-field superconducting magnet. Internationally known for his

cryogenic research, Dr. Huhn was honored by the Franklin Institute in 1964

with its John Plice Wetherill medal in recognition of his discoveries in low-

temperature physics. He received the American Physical Society International

Prize for new materials in 1979. In 1980, he received the Westinghouse Or-

der of Merit for his pioneering efforts in the application of superconductivity

to electric power technology. Dr. Hulm was elected member of the National

Academy of Engineering in 1980 and member of the National Academy '..,fSci-
enc,'s in 13_8. H,, has served on a large mnnbcr of Government Committees

and Study Groups. Current _,plmintnwnts include: National Materials Advi-

i sory Board (NRC), Solid St.ate. Seieuces Committee (NRC), Board ,,f ()ver.';eers,
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Superconductivity St.'per-collider (URA), Adviso;y Board, Division of Interna- 1

tional Affairs (NSF), Advisory Committee, Francis Bitter National Magnet L-,b

(MIT), Advisory Board., Science & Tech.,mlogy Center (NSF).

A.1,6 M. Brian Maple

M. Brian Maple has been professor of Physics at the University of Califor-
nia, San Diego, since 198l. He received his Ph.D. in Physics from UCSD in
1969. His current resem'ch interests include superconductivity, magnetism, va- 1
lence fluctuation and heavy fermion phenomena, low temperature and high

pressure physics, surface science and catalysis. Dr. Maple received a John Si-

mon Guggeraheim Memorial Foundation Fellowship in 1984, and was named a

1987 University of California, San Diego, Distinguished Alumnus of the Year_
and the 1988 San Diego State University, College of Sciences, Distinguished
Alumnus of the Year. He is a Fellow of the American Physical Society and

served as the Chairman of the APS Division of Condensed Matter Physics in

1987. Dr. Maple has been the Chairman or Co-Chairman of six International

Conferences, has co-edited two Conference Proceedings and two volumes on

Superconductivity in Ternary Compounds, and has served as Guest Editor of a

special 1989 volume of the Materials Research Society Bulletin on "High Tem-
_'erature Superconductivity'. He currently serves on Advisory Committees for

Argonne, Lawrence Livermore, Los Alamos and Oak Ridge National Laborato-
rks. In 1986, hc was a member of the U.S. Delegation to the Annual Meeting

of the Japanese Special Program on Superconducting Materials in Tokyo.

A.1.7 Rod K. Quinn

Rod K. Quinn is Director of the Exploratory Research and Development Cen-

ter and of the new high-temperature superconductivity research center at Los
Alamos National Laboratory. These (',enters will promote interactions with

industry, other laboratories and universities as well as coordinate and focus

Laboratory research in high-temperature superconductivity. Quinn joined Los
Alamos in 1986 as an associate division leader and program manager in the

Chemical and Laser Scie, ces Division following a 19-year career at Sandia Na-

tional Laboratories in Albuquerque, N.M. He earned a doctorate in physical

chemistry from the University of Texa._ at Austin in 1967, when he became a
staff member at Sandia, and later dir(.cted research programs in electrochem-

istry, solid-state chenfistry and inorganic materials synthesis and characteri-

zation. He was project leader for Sandia's successful long-life thermal battery

development program, supervisor of the Exploratory Batteries Division at San-
dia from 1978-82 and supervisor of the Inorganic Materials Chemistry Division
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from 1982-86. He is a member of the American Chemical Society, a feUow of the ]

_merican Institute of Chemists and active in the Materials Research Society, 1
in which he has held several national offices. _

A.1.8 Richard _V. Ralston ]

Rachard W. Ralston is the leader of the Analog Device Technology Group at
the MIT Lincoln Laboratory. Since 1988, Dr. Ralston has been Director of a

Cons,:,rtium in Superconductive Electronics which involves participants from

several MIT departments, the Francis Bitter National Magnet Laboratory, and
two directorates of the Air Force Rome Development Center. An expansion

of the consortium activity to include the IBM Research Division, AT&T Bell

Laboratories and other industrial, university and government laboratories is

now underway. He received the Ph.D. degree in applied physics from Yale

University in 1971, worki,g on two-dimensional quantum effects of' electrons

in inversion layers at cryogenically cooled silicon surfaces. From 1965 to 1966
he was a staff member at Bell Laboratories, Murray Hill, NJ, v_here he partic-

ipated in the development of microwave devices. In 1971 he joined the MIT
Lincoln Laboratory staff, initially working on tunable diode lasers and het-
erostructure waveguides in a 3- to 16-micrometer wavelength region. Since

1974, he has been v_orking in the Analog Device Technology Group, which he

currently leads. His teclmical activities presently include the developmen_ of

charge-coupied devices and microwave superconductive integrated circuits for
wideband, and real-time signal processing, and include efforts in low- and high-

temperature superconductive technology development. Dr. Ralston has served
as an invited short-term visiting researcher in 1987 on the topic of Josephson

device technology at tLe Electrotechn_cal Laboratory m Tsukuba, Japan, and

has participated in several joint Japan-U.S. Josephson Dev:.ce Workshops. He

holds several patents and has authored meny technical papers.
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A.2 Itinerary of JTEC Panel in Japan

Date Labcratory JTEC Members visited

May 30 Mag-lev Test Site Hulm

May 31 Furukawa Electric Hulm

May 31 MITI Hulm

June 1 Fujitsu Dynes, Ralston

June 1 NEC Dresselhaus, Gallagher

June 1 RTRI Hulm

June 2 KEK Dresselhaus, Hulra

June 2 NTT (Ibaraki) Dynes, Gallagher, Ralston

,, June 2 Hitachi (Ibaraki) Dresselhaus, Hulm

June 3 Tohoku University Dresselhau.% Dynes, Gallagher, Hulm, Ralston

June 5 ISSP (U. of Tokyo) Dresselhaus, Dynes, Gallagher, Hulm, Maple,

Quinn, Ralston

June 5 ERATO briefing Dresselhaus, Dynes, Gallagher, Hulm, Maple,

Quinn, Ralston

June 5 U. of Tokyo Dresselhaus, Dynes, Gallagher, Hulm, Maple,

Quinn, Ralston

June 6 Electrotechnical Dresselhaus, Gallagher, Hulm
Lab.

June 6 NIRIM Maple, Quinn

June 6 Hitaclfi (Kokubunji) Ralston

June 6 NTT (Musashino) Dynes

June 6 NRIM Dresselhaus, Hulm, Maple, Quinn

June 7 ISTEC (Nagoya) Dressclhaus, Dynes, Horn, Hulm. Maple, Quinn,
Ralston

June 7 Sumltomo Dresselhaus, Dynes, Horn, Hulm, Maple, Quinn,
Ralston

June 8 Matsushita Dresselhaus, Horn, Hulm, Maple, Quinn

June 8 Mitsubishi Dressclhaus, Horn, Hulm, Maple, Quinn

.hme 8 Organic Supercon- Dresselhaus, Horn, Maple

duc,*or briefing

June 9 ISTEC (Tokyo) Dresselhaus, Horn, Hulm, Maple, Quinn

June 9 Toshiba Dresseli_aus, Horn, Hulm, Maple, Quinn
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i A.3 Biographical Sketches of JTEC Review Panel
Members

A.3.1 Richard D. Blaugher

RichardD. BlangherisManager ofHigh Temperature SuperconductingMate-
rimsand Electronicsat IntermagneticsGeneralCorporation(IGC) inGuilder-

!and,New York. He has been directlyassociatedwith superconductivityre-

searchforover30 years.Hisresearchnas been directedatmaterials,largc-scMe

applicationsingeneratorsand magnets,and more recentlyhe has been work-

ingon Josephson-basedsuperconductingelectronics.He currentlydirectsthe

advanced superconductingmaterialsresearchat ICC Priorto joiningIGC,

he was manager of the Superconductivity,and ElectronicsDepartment at the

WestinghouseR&D Center.He has servedon numerous government commit-

teeson superconductivityand alsohas servedon thcAppliedSuperconductivity

and CryogenicEngineeringBoards.He has publishcdover70 papersrelatedto

superconductingmaterialsand applications.

A.3.2 Bobby D. Dunlap

Bobby D. Dunlap is Director of the Materials Science Division of the Argonne
National Laboratory. He has been assocmted with Argonne since receiving his

Ph.D. in Physics from the University of Washington in 1966. His principal re-
search interests have involved studies of the magnetic and electronic properties

of rare-earth and actinide materiMs, with emphasis in tile last several years on

materials which display both magnetic ordering and superconductivity, and on

" high transition temperature oxide superconductors, He has authored, or coau-
thored 180 journal articles. Dr. Dunlap is a Fellow of the American Physical

Society and an Editor for Physica C: Superconductivit.y.

A.3.3 David S.Ginley

David S. Ginley, presently Supervisor of the Semiconductor Materials Divi-
sion at Sandia National Laboratories. was born in Denver, Colorado in May

1950. He received his B.S. in Mineral Engineering Chemistry from the Col-

orado School of Mines in 1972 and his Ph.D. in Inorganic Chemistry from MIT

in 1976. Since that time he_has been at S,,ndia National Laboratories. His pri-
mary interests are in the applica.tions of inorganic chemistry to the synthesis

_ and processing of materials. Some of his arem,_ of il_terest have been photo-

chemistry, l)hotoehctroch('mistry, impr(,ved efficiency in polysilicon solar cells,

i
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and novel chemical sensors. Currently his primary interests are in high temw'r-

ature superconductors and the novel processing of compound semiconductors.

He currently supervises a research group developing new ,materials and device
straetures with MOCVD and MBE in the compound semiconductors and high

temperature superconductors. Dr. Ginley has written or co-_-11thored over 150

technical papers and bolas 5 patents. He is currently an editor for _he Journal

cf the Electrochemical Society and the Chairraan of the Energy Technology
Division of tl',e Society.

A.3.4 Richard L. Greene

Richard L. Greene is Director of the Center for Superconductivity Research

and Professor of Physics at the University of Maryland. He received his Ph.'D.

degree from Stanfo_'d University in 1967 and remained there as a research asso-

ciate until 1970. He then joined the IBM Research Division and held a variety

of research and management positions at both the San Jose (Ahnaden) and

Yorktown Heights laboratories until accepting his present position in Mary-

land in 1989. His personal research has involved many problems in condensed

matter physics, including properties of low dimensional metals, organic super-

conductivity, and high-temperature superconductivity. He has authored over
115 technical publications and is a Fellow of the American Physical Society.

Dr. Greene has been on the organizing and program committees of many in-

ternational conferen:es and currently serves on the advisory committee for the

Francis Bitter National Magnet Laboratory.

A.3.5 Richard E. Harris

Richard E. Harris is Group Leader of the Cryoelcctronic Metrology Group at

the National Institute of Standards and Technology (NIST) Boulder Laborato-

ries, He received his B. S. in Physics with High Distinction from the University

of Rochester in 1963, followed by a M. S. in 1965 and a Ph. D. in 1969 from

the University of Illinois. He joined NIST in 1975 after worki'_g at the United

Technologies Research Ccn_er for 6 years. In 1980 he spent one year at the
IBM Zurich Research Laboratories. Dr. Harris' research has dealt with flux

motion in superconductors and both fundamental and device aspects of su-

perconductors. In 1979 he was instrumental in beginning the Workshop on

Superconducting Electronic Device_, Circuits and Systems and continues an

active role in this workshop, serving as chair in 1985. Hc serves oft the Board

of Directors of the Applied Superconductivity Conference and is a member of

the American Physical Society, the IEEE, and the AAAS. He has also assisted

the Agency for International Dcvclopm(:nt and has _crvcd on study panels for
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the Office of Techuoh,gy Assessment and the Office for the Under Secretary of
Defense for Acqu;si_iox_.

A.3.6 Miles V. Klein

Miles V. Klein is Professor and Director of the Science Technology Center for

Superconductivity (STCS) at the University of Illinois at Urbana-Champaign.
He received his Ph.D. degree from Cornell University at the beginning of 1961

and spent 1961 as an NSF Postdoctolal Fellow at the Me,x Planck Institute

for Metal Research in Stuttgart. He became a faculty member at the Univer-
sity of Illinois in 1"362. He uses optical techniques, primarily Raman scattering

and photoluminescence to study se.niccnductors and metals, especially super-

conductors. His group was the first to observe the gap, 2A, using Raman
scattering. He is a Fellow of the American Phy3ical Society and a Senior Mem-

ber of the IEEE. Ite became Direct3r of STCS upon its funding by NSF in

February, 1989. Klein has twice served on the Executive Committee of the

Condensed Matter Division of the American Physical Society, the second time

as Chairman, and has served on, and chaired, the Oliver Buckley Condensed

Matter Prize Committee of the American Physical Society

156

1990013093-175



A.4 Agenda of kick-off meeting, March 31, i989

9:30 Coffee and Doughnuts

10:00 Introductions - George Gamota I

10:10 Overview of JTEC - Duane Shelton

10:25 Overview of NSF's Superc_nductlvlty Activities and
Interests - Frank H,iband

10:35 Overview of Other Agencies' _nterests

;1:00 Panel Chairwoman's R_marks - Mildred Dresselhaus

11:15 Panel Discussion on Study Scope and A11ecatlon of Tasks 2

12:30 Working I.unch (Served in Roo_)

a) Administration of Study - Stephen Gould
b) Report and Workshop - _eorgs Gamota

c) Literature Support and Japan Trip - Alan Engel

1:15 Addltloqal Panel Discussion 3

3:00 Solicitation of Panel Support Requirements

4:00 Meeting Adjourns

Notes: ,I. Dr. Gamota will chair the meeting untll 11:_0; Prof.
Oresselhaus thereafter.

2. Prof. Dre_selhaub suggests a possible partition:
(I) Science, (2) Materials, and (3) ApplJcatlons.

3. To focus the study, Prof. 'DreEse_haus suggests that
th_ panelists each prepare a brief summary of U.S.
research in their area before the trip to Japan.

4. Please prepare a llst of Japanese labs that should be
visited in your area of experlse, preferably with the name
of a contact.
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A.5 Agenda for Oral Report Meeting, August

1, 1989

SuDerconductlvlty Wo_KshoD

August 1, 1989

1800 G Street, NW, Wasl_lngton, OC, Room 540

DRAFT AGENDA

9:30 Registration (coffee and continental breakfast)

10:00 o Welcome to NSF

10:10 o Review of JTEC Huband

10:30 o Introduction to Study Dresselhaus

10:50 o Introduct;on to the Technologies Qulnn

11:20 o Science Horn

12=00 o Lunch (served In meeting room)

1:00 o Materials Oyne_

1:40 o Processing Maple

2:20 o Electronic ADpllcatlons Ralston

3:00 o Electrical and Magnetic ApDIIcatlons Hulm

3=40 o Review Commentc Discussants and
Partlclpant_

4:00 o Concl_oin9 I_emarks Dr_sselhaus

4:20 o AdJcurnment
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Appendix B i

Laboratory Visits

B.1 Government Laboratories

B.l.:/ Electrotechnical Laboratory (ETL)

M.S. Dresselhaus

We (Johv Huhn, Bill Gallagher, Paul Herer and Mildred Dresselhaus) started
off from our hotel in Tokyo at 7:15 am afir a 6 am meeting witb several

members of the JTEC team. The trip to the Elect,'otechni,_'al laboratory was
done by taxi to Tokyo station, and a bus tu Tsukuba, and a walk 10 minutes

from the bus stop to tile laboratory. We arrived early t,., the meeting rooni and
had ti:lle for small conversation and watched the leaders of the Electroteclmical

Laboratory (ETL) assemble. The visit was w_ry well organized and we were
shown as much as was possible in the available time.

As our meeting started, we were greeted by Dr. Masuru Sugiura, the Direc_or-

Gener,'d and his Deputy Director-General, Dr. Hiroshi Kashiwagi. Dr. Sugiura,
himself, gave us an overview of the Electroteclmical Laboratory. The ETL ;s

the largest national institute i, JaI)an, and is under the Agency of Industrial
Science and Technology (AIST) of the ),{i,l_.stry of International Trade and Ir.-

dustry (MITI). The labocatory is also one of the oldest, being established m
1891 ns :_testing laboratory under the Bureau of Electrocommunications of th(,

Ministry of Communi('ations. This lat)or:ltory considers itself the best nar,ional

laboratory in Japan an(l has spawned nmjor lal)oratories, tl)e most celebrated

being the NTT Electrical Communications Laboratory in 1948. The ETL has

b_:('u under AIST sI),.)ns(,rshi I) since 1952. Its present structvre (lat,,_ !,,ack to

1970 and its I)resent Io('ati(m in Tsukl,!,a to 1979. In 2 years the laboratory

will be eelel)rating its 100th anuiw,rsar 7, and they ;,'e proudly thinking about
that occasi,)n.
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The laboratory employs 700 peoplc with an annual budget of $70 M, They

are organized into four units: Electronics, information 'Technology, Energy

Technology, ,rod Standards and Measurement Technology. There is no car-.

responding laboratory in the United States, the closest perhnps being the
National Institute for Science and Tecllnology (NIST, formerly the National

Bureau of Standards).
In this laboratory about 60-70% of the research personnel are Ph.D.s, which

is high Ior Japanese R&D organizations i_ industry and other national materials

laboratories. About 10% of the current effort is devoted to superconducti,,ity,

or about 60 people (about 30 in convention,-.! supf.rconductivity, 10 in organic

superconductivity and 20 in high-To oxide superconductivity). Of this group,

5% are foreigners, and Dr. Sugiura identified 3 foreigners cnrrently workir_g at

ETL on superconductivity, one from the U.S. working on standards, ,one from
England working on the meclmnism for superconduct.ivi_y, a_ld one from Italy

worki.:g on Josephson junction technology. About half of the present members

of the superconductivity groups had been working with super cnductors orior

to the discovery of high-T_ superconductivity. With regard to Lhe MITI bud-

get for superconductivity, 10-15% of t.he total MITI budget goes to ETL. The

budget figures tbr MITI suI)port do not contain the costs for industrial pal-tici-

pation; thus they estimate that 20-30% of the budget goes into personnel costs,
and the rest into project support, equipment, etc.

With regard to the high-T_ program at ETL, t,._re is presently not much
interaction with industry and universities (on the order of 20-30 researchers),

and these interactions are mostl." developed by persom,l contacts. Most sin-
dents working at ETL are undergraduates (and they are few). Overall there

are less than 1O grad,aate students using the resources at ETL for their Ph.D.

degrees. T!.ese fi_;ures wet e quite s_.,.rprising compared to National ..*,aboratories
in the U.S.

Following the overview talk by Dr. Suginra, and the question-answer pe-

riod _hat followed, we had a briefing by Dr. Kajimnra, who reviewed the MITI

project on superconductivity. One of the superconductivity progrmns was a

special research project on digital Josephson technology, and included R&D

on all Nb and Nt;N integrated circmt technology. This low-T_, work has al-

re.ady had a major impact on the development of superconducting electronics

capabilitie:; at Fujit:;u, Hitachi, and NEC Another project using conventional

superconductora involved R&D for a large magnet (outer radius of 70 cm) for

a fast ramp-ut) of tt-,; magnetic field for mu-lcar fir,dan applk ations. ETL has

a significant commitnwnt to R&D on organic sut,crccnductors through their

program on basic technologies for future industries. Under the "moonlight"

project wh;,"h involves R&D directed toward energy cunservation technology,

a new projPct w0s started ;n FY 1:)88 ipw_lving superconducting technology
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! for electric power systems, including superconductor rotor machines and the
i development of superconducting materials to support this industry. Supercon-

r ductivity research has been designated as an area for international collabora-
! tion, bringing foreigr, scientists to work at ETL for extended periods. Many

i Divisions were partidpating in superconductivity R&D. All 3 sections of the

i Physical Science Division are involved with basic research on superconductors.

! Tile Materials Science Division seemed to focus ',.heir R&D on superconducting

ma_eria!s with potential for higher To, and in this division they were preparing

and characterizing thin film oxide materials. In the Electron Devices Division,

R&D on superconducting electronics was taking place while superconductors,

SQUIDs and Josephson erects were being studied for metrology applications.

Within the Superconduct;ng Technology Section of the Frontier Technology

Division was a large program on developing superconducting wires for mag-

nets and finding applications for superconducting materials. The Supercon-

ductor Appl]catior_s Section of the Energy Technology Division was working on

sup_:rcanducting machinery, refrigeration for this machinery, magnet design,

superconductiag generators and R&D for a high field pulsed magnet.
Dr. Jun Kondo, the discoverer of the Kondo effect and the only researcher

with the honorary title of ETL Fellow, heads the Theory Group. He briefly

spoke to us on their superconductivity theory progrmn. They have 5 theorists

in all (each having a Ph.D. degree), and they are mostly interested in the oxide

superconducturs, though they have some effort, on calculating the energy levels

for the organic superconductors. Their high-To theory efforts were directed

toward calculation of the electronic structure, carrier distribution, Madelung

energy, e._change interaction and spin orbit interaction effects, as well as study

of the basic mechanisms of the high-T, superconductors. Thei: organic su-

perconductivity group included at least 6 researchers; and covered synthesis,

property measurements and theory, with a lot of work on the BEDT-TTF sys-

tem, wi'ich has shown T,. values above 10K. Over 20 members of ETL were

involved in materials synthesis and cl;aracterization of the high-Te oxide ma-

terials, a::d many of the same people were also involved in measurements of

the physical properties. In the mater:.als and property measurements projects
there was some interaction with industrial visitors. One memorable work was

the earl- identifica.tion of the space group of the T1 "1234" phase (T_= :2,..I!xl

using beautifid TEM lattice imaging patterns to show the 4 copper la.ye:.,; s, ,)-

arat.e(l 1)y ,:. calcium layers. Strong l)rograms w,,re in operation t(..,tndy the

electronic prcperties by EXAFS met, hods and :nagnetic properties **sing a va-

riety of techniques. ()rieh;ed thin films of Bi-Sr-Ca.-Cu-O were being grown

by co, ,,aporation in a MBE machine. Sui)erconductor-.normai-superconductor

(SNS) ,]osephson juactions had 1,e."n fal:rica!ed from YBaCuO fihns at art early

stage. On the laboratory tour we visited the Applied Physics Section and spoke
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to people doing EXAFS measurements. We also saw their high-To film depo-

sition laboratory which was impressive by the density of very fancy MBE and

deposition equipment and by the large m,mber of Cue2 layers they could pre- i

pare in a controlled way.
DC SQUID studies hased on NbN were still under active investigation for

use as a magnetometer or gradiometer, in collaboration with researchers from

industry and academia. With this technclogy they have developed a voltmeter

with an accuracy of 10 -8, and this instrument has been used for the absolute

measurement of the magnetic flux quantum with a noise figure 20 times bet-

ter than commercial SQUID magnetometers and a sensitivity of ,-_ 10 -s. The

Joscphson technology was also being applied to a variety of circuit applications,

such as a 10-bit ROM unit for a prototype computer, a 2-bit arithmetic logic

unit using a four-junction logic gate, a high speed 1-kbit variable threshold

Josephson RAM chip, an address control unit integrated circuit for a 4-bit mi-

crocomputer prototype. One interesting aspect of the Josephson technology

program was the strong interaction with visiting scientists, thereby transfer-

ring the technology of building superconducting integrated circuits based on

refractory Josephson tunnel junctions of sputtered Nb and NbN films. Some

of this Josephson Technology has been used to observe fluxon reflections and
fluxon-fluxon collisions in a transmission line. On the tour, Dr. Itatu Kurosawa

showed us the Superconducting El(-ctronics Laboratory with a heavy technical

concentration of new multichamber deposition equipment being used to grow

and study high-T_ film materials. I
On the large scale applic,_tions, one of the highlights was the development

of new fabrication processes for adding Ti to Nb:,Sn wires to improve their

ductility more efficiently and with lower cost because of their easier manufac-

turability. Work is in progress to develop a high field fast pulse magnet. For

this goal a forced cooled NbaSn superconducting magnet composed of 9 double

pancake coils has been fabricated and successf,,fily tested at the high field test

facility of ETL. On the tour we saw some of this very large equipment.

B.1.2 ERATO Program, including Quantum Magneto-
Flux Logic Project

M.S. Dresselhaus

On June 5, we were invite(l to lunch in Tokyo with Mr. Genya Chiba, Direc-

tor of the ERATO l)rogram, so that he could tell us more about the program.

In the 1970's, there developed a cons_'nsus among the government Ministries

that Ja.i)an nee,led more fo('usod r.,,search t)rograms than are normally pro-
vided by individual grants. By timt time enough government research money
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was becoming available, and some of this was channeled through the Science

and Technology Agency (which is a Ministry) to the Research and Develop-

ment Cotq)oration of Japan (JRDC), a statutory corporation of the Japanese

government, to start the ERATO program in 1981.
Some of the basic concepts behind the ERATO program are the following.

Scientists (mad tect.aologists) are considered as creative artists (young sci-tech

"performers"). The research themes and project Directors are selected by the
Research arid Developn,ent Council of JRDC, comprising both scientists and

industrialists from the public and private sectors, and are recommended to the

president of JRDC. It is the job of a group of about 10 people and the Director

of the ERATO program (Mr. Chiba) to identify people and themes for the

Council to consider. They I,ut a great deal of effort into identifying especially
creative, young individuals to become directors of the ERATO projects.

Each project leader will identi_" aad recruit about 10-15 young scientists
and engineers who can make significant contributions in the field of the research
theme, about half from universities, and half from industry. Each project lasts

for 5 years and is then terminated. To emphasize the finite lifetime of projects,
the laboratories for each ERATO project are housed in rented space. The

funding for each ERATO project is at the $3 M/year level, with the idea that

funding a talented person at a generous level will produce significant results

within a 5 year period. One of the successes reported by Mr. Chiba was the

synthesis of a polymer-based graphite film, something I knew about in the past,
but did not know that it came out of an ERATO project.

[ With regard to the participants in the ERATO projects, the companies anduniversities involved have a positive attitude. About 90% of the participants
have returned to their home institutions with valuable additional experience,

something like an advanced post-doctoral program, trod most of the returning

p,_ople are soon placed in positions where they can create imlovative research
teams like those found in ERATO projects. For most of the participants, their

ERATO experience is in an area not too far away from what they were doing

before. With regard to il.wentions made through the ERATO projects, 512% of

the rights belongs to the individual and/or their base company/institution and
50% to JRDC.

Thus far 7 projects have been completed, 11 are in progress, and 3 will

begin in the fall of 1989. Almost all of ttv2 ERATO projects have been in

d_e friage area of basic, science and :_me-ging technology, because the II&D
Council of the: JRDC believe that it is these fields which attract tl_e most

creative people. Some of the areas that have been selected inc!ud(" qm.._tum well
devices; femtosecond chemical reactions; electron interference effects; picking

up individual atoms from a surface; locating gent:; within the human genome.
Since our JTEC pnnel was involved with a superc:)ndv.ctivity st.udy, we
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were particularly interested in ERATO projects in superconductivity. Thus

l far, they have chosen only one superconductivity-re!ated project: Professor
Eiichi Goto of the University of Tokyo is now studying flux quanta, and the

idea of using single flux quanta as a bit of information. In this project Professor
Goto will explore circuits and applications of the Quantum Flux Parametron

(QFP), which he invented about 30 years ago in the context of a ferrite core.

The parametron is here used in the context of a Josephson junction element

in a magnetic flux loop. This technology benefits from very high speeds and

extremely small power consumption, and is being examined for a variety of

digital applications including next gene:ation computers.

The Technical Manager is Dr. Yasuo Wada, on assignment from the Hi-
tachi Central Research Laboratory, who spent about a year at MIT a decade

ago where he interacted strongly with the Dresselhaus group. Under the di-
rection of Dr. Goto, Wada manages a team of 17 researchers from 3 different

private companies, three universities and four foreign countries, in addition

to 7 support staff coming to a total of 23 team members. The project con-

sists of three groups which conduct research in the facilities of their home
institutions, and each of the four collaborating organizations makes a unique

contribution: Hitachi contributes an excellent fabrication facility for Joseph-

son technology, ULVAC contributes magnetic shielding and vacuum technology
and Mitsui Systems Research contributes systems and software expertise, all of

which Professor Goto feels to be necessary for the success of the project. In this

consortium, researchers at three different locations are supported by ERATO

flmds and report to Professor Goto. The benefits to each of the companies is

_he development (through governmrnt support) of advanced h,chnology which

may perhaps be comnmrcialized at some fllture time, as well as access to some

exceptionally talented, young university researchers, who may eventually join

their companies.

The ERATO l)rogram has intentionally not been involved with high-T_

sut)erconductivity because the ,]apanese leaders feel that this subject is being

well supported by other sou, ces. The ERATO program has been evaluated

after its first 5 years of Ol)er_tion and is considered to be a, success in terms

of training young people, enriching their careers and enhancing the Japanese

inflastructuro for _&D. The program has thus far sup!)orted 1500 publications.

Alan Engel, who worked for us in arranging the lal)oratory visits for the JTEC
study., is himself a former EI1ATO re:aearcher and at. present is the overseas

liaison representatiw, for the ERA £O l)rogram. In the first six mol, ths of 1989,

th," EllATO program has ha(l 260 ovrrseas applicants, 10 of which have been ..

sei_ cted from this applicant pool. Currently there are 12% foreign researchers

in the ERATO program and it is hoprd to incre-asr that percentage to 3(1%.

The goals of the EIlATO prograln are to create a. favorable enviromnent within

164

1990013093-183



which innovative research could flourish.

Since the ERATO progr_ma crosses the traditional boundaries of the vari-

ot.s Ministries wr_rking in science and technology, this progrmn has stimulated

a competitive spirit among these institutions, resulting in the creation of sim-

ilar programs. We learned for example that the Ministry of Education is not

enthusiastic about the ERATO progrmn and its projects, especially when the

projects involve people at universities who have traditionally been funded by
them.

B.1.3 International Superconductivity Technology Cen-
ter (ISTEC)

M.S. Dresselhaus

ISTEC (International Superconductivity Technology Center) is a new experi-

ment in Japan for coupling industry to basic and applied research. The concept

is largely due to Professor Sl',oji Tanaka, who was the first to develop a national

thrust p=ogram in new superconducting oxide materials in 1984 and in whose

laboratory the pioneering discovery by Bcdnorz and Mfiller of high-T¢ super-

conductivity was first confirmed. The ISTEC laboratory was established in

January 1988 and the building was occupicd ;n November 1988. At the time of

our visit 7 months later, 70% of the equipment and most of the people were in

place. Serious scientific work in the laboratory started two months before our
visit.

The funding for the laboratory has three components: one is the initial con-

tribution by each full member company ($800 K), the second is the on-going
annual $100 K fee for membership, and the third category is direct support of

about $G.8 M of the tatal research budget ($17 M/year) from MITI. Because

of their success ill getting coml,m!ies to l_.-come supporting members (111 com-

panies had joiued bv the time of our visit), ISTEC has a generous budget. Of

these 111 companies, 65 of the companies are ordinary supporting members

and 46 companies are fifll supporting members. Fo,'eign companies can also

join, and 7 have elected to do so, fi of these being fl'om the U.S., and 2 from

Eurm)e. Each fill member coral)any is allowed to send up to 2 researchers to

work at ISTEC, while also paying tl'.eir salaries. At present ISTEC has 86 re-

search(,rs of whom 75 have come from supporting companies. The remaining 11

(including one foreign researcher from MiT) are directly supported by ISTEC.

The activities of IS'I'EC include research work, the sponsorship of one large

symposium/year, the Imblication of a journal [14] (4 issues/year)in Japanese

and English, the spons(',rshil_ of a workstml_ ill high--T¢ superconductivity for

-,, 170 partMpants, and ttw sponsorship of surveys mid studies on high-T_
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superco_duci_ivity.

Our visit to ISTEC occurred ou one rainy Friday morning, June 9, 1989.

Leaving the Akasaka Tokyu Hotcl at about 9:15 am after a one hour progress

and planning meeting of oar JTEC group (Blian Maple, John Hulm, Rod
Quinn, Paul Horn and Mildred Dresselhaus), we went to ISTEC by subway
and then on foot in the rain from the nearest Metro station. Just as we arrived

at ISTEC, so did Dr. Nobllyuki Kambe of NTT, who had taken his Ph.D. from

MIT, and served in part as our faci!itator.

To keep the laboratory clean, we were given plastic baggies at the laboratory
entrance to put over our shoes. 'We were then ushered into one of their smaller

conference rooms for a briefing. After the usual greetings and exchange of name

cards, we were served some hot green tea, and the action started.

Since many of us kne_' Dr. Shoji Tanaka, the Director of the Superconduct-

ing Research Laboratory, he started the briefings, which were soon taken over
by Dr. N:_oki Koshizuka, Tanaka's deputy director and Director of Division I.

In Dr. Koshiz-l:a's briefing, he covered the organization of the overall ISTEC

organization and the Superconducting Research Laboratory (SRL), including

the ISTEC branch laboratory at Nagoya, which we had seen two days earlier.

We then heard briefings from the heads of each of the divisions. Dr. Naoki
Koshizuka described the activities of Division I, Physics and Characterization,

consisting of 13 research scientists, 1 visitor and 2 students. This division had

two foci: (1) fundamental studies oa the physical properties of the new super-

conductors and (2) the development of new characterization techniques. Under

the first heading they were conducting studies _n the structme (TEM, SEM,

x-ray diffraction), electronic properties (specific heat, magnetorcsistance, and

magnetic reso'lance), dynamic properties of fiuxoids (SQUID and a.c. suscep-

tibility studies), optical and surface electronic properties (IR, Raman, XPS,

UPS). In the second category they had high pressure studies using a diamond

anvil apparatus, measurements of the critical current, and of the critical field

H_ using p,llse techniques and specific heat meastlrements. They were plan-
ning experiments to observe fluxoids using a magneto-optical technique and

surface tunneling studies using a scanning tunneli_g microscope and scanning

tunneling spectroscopy. Paul Horn ask,.,d them about their studies of the nor-

real state properties and fo_.:nd that the normal state was not heavily studied.
Wit:h regard to the niagncto-optical studies, they told us of tt-eir plm_s '_o fol-

low fluxoid motion dynamically by depositing EuS on high-._ materials. They

were pbmning t.o use the pulsed high field magnets a.t the ISSP for their high

field flux(rid studies, and their :_wn supercoI_ducting magnets for studies below
10 tcsla.

A briefing on Division lI Ceramic Materials was given by Dr. Hisao Ya-

rnm,chi, who hea_led the division, consisting of 20 res(,a . , scientists and 1
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student. Their research was .on the search for new superconducting ceramics

(copper oxides, oxides not containing copper, and other ceramics), the dev. '.op-

ment of present high-T_ superconducting oxides and the analysis, characteriza--

tion and modeling of these high-T_ superconductors, including the temperature

dependence of the resistivity and magnetic susceptibility, crystallographic stud-

ies, i-Iall effect and thermoelectric effect studies and modeling.

Profeasor Shoji Tanaka was himself leading Division III, _he organic s,x-

perconductor division, while looking for a permanent director for this division.

'].'his group now consists of 4 research scholars, and one student. Their program

focused on the deve!opment of organic superconductors, the search for new or-

ganic superconductors, measurement of their physical and chemical properties,

optical properties, the isotope effect, chemical an,'flysi," and theoretical model-

ing. Dr. Hatsumi Urayama-Mori, who is now at ISq_'EC Nagoya, was making

the samples. The focus of the entire organic superconductor group is currently
on basic science issues.

We then heard an overview presentation from Dr. Yuh Stdohara on Divi-
sion IV on Chemical Processing. The division consists of 15 researchers, 2

students and 1 v;sitor from MIT (from thc Cinm/Bowen ceramics group). The

research of this group was on developing thin fihns, thick fihns, wires and tapes

using vapor phase epitaxy tVPE) and chemical vapor deposition (CVD), me!t-

solidification processing with which they were having good success in increasing

critical current densities, and chemical solution processing (sol-gel coprecipita-

tion and drying), with which they were having less success but felt that it was

important to pursue because of the potential applications, and finally solid

state powder ceramic processing. This group also makes single crystals for use

by members of Division I and also thick tapes, wires and films.

Next we heard from Dr. Hisao Yamauctfi, who was speaking in place of Dr.

Tadataka Morishita, head of Division V on physical processing, who was attend-

ing a con.r:,'ence on high-T- superconductivity elsewhere in Japan. This group
presently consists of 18 researcimrs and 1 student. Division V was coI::cerned

with the development of fabrication processes for thin fihns with precise compo-

sitional control which are compatible with semiconducter processing, stressing

the preparation of films at low processing temperatures and growing the films

in-situ. The other main goal of this group was in the processing of the super-

conducting oxide films into useful forms, including flmdamental studies of _he

physical properties of the interfaces with other superconductors, superconduct-

ing oxides, semiconductors and insulators, including multilayer capabilities. For

their thin fihn work, they were interested in sputtering, MBE, and las,:,r ab-

lation, and were using ion assisted procc.:sing, and litlmgraphic techniques for .,
sputtering. They are expecting to have a fi_cus(,d ion beam aI)paratus soon fiw

lithography and etching.
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The last division at ISTEC Tokyo was a computer assistance division which

is intended to provide assistance to researchers in all the divisions.

Following these presentations on the organization of ISTEC, three research

presentations were plmmed, but because the Lime was short, only two pre-
sentations were actually given. The first pre._cntation was by Dr. Masahito

Murakami from Nippen Steel, who reported his results on the melt process-

ing of "123" materials into thick films and ;eportcd on his efforts to achieve

higb-J_ in a magnetic field. His observation that the change in magnetiza-

tion did not depend on the sample size implies that the J_ is limited by grain
boundaries rather than sample size. He therefore did a lot of detailed work

on the phase diagram to get the "211" phase into very small particles, finely

distributed throughout the material. Then he did detailed studies on cooling

in a magnetic field. Samples with the best microstructure had little crystalline
orientation. There wa;3 then some discussioi_ about the merits of transport vs.

magnetization measurements for studying J_. Since th_ magnetization mea-

surement gets contributions from all directions, these measurements contain a
kA of information about defects. Tim_e dependent magnetization measurements

were used to study flux creep, pirming forces and pinning energies. This was

very nice work.
We next heard from Dr. Setsuko Tajima, a lady assistant professor from the

Up.iversity of Tokyo, who was now an ISTEC employee. She had been studying

optical properties on all kinds of oxide superconductors looking at the eff'_ct of

doping on the plasma frequency. She also was doing reflectively measurements

on the electron system Nd_._×C%CuO4. She and G. Thomas of Bell A'I'&'T

were identifying infrared structure with the superconducting band gap. The

plesentation was too fast to get the full details of the work, but repri_ts were

provided to help us along.
Following the two presentations, ,_,ehad a tour of the laboratory In the lab

tour we heard that about 70% of capital equipment had already been delivered.

Their building was rented because of the idea that ISTEC is to b=: in existence
for i0 years arm then would l:,e disbanded. During our visit the researchers

were heavily involved in setting up state of the art equipment: 2 x-ray systems,

a 400 kV TEM, 2 SEMs, 2 SQUID magnetometers, and an optics laboratory

was being set tip, etc. Each Division was being set up in one laboratory. The

laboratories looked quite crowded, but the equipment was new and top of the
line. In one of the laboratories alone, we saw about $10 M worth of equipnwnt.

We were .,;hewn two of the five laboratories. They were very impressive.

Professor Tanaka thiuks that what it takes to make progress in this high T_

field is equipment at. the level of sophistication of the semiconductor indus-

try. Tlms they weIe using the $0.8 M per company initial.ion fee fi_r capital

equipment and sl)ace reimvat.ion. We also saw the crowded o_ce _pa.ce of the
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researchers, with many cubicals separated by sound barriers. The offices were

very small, attractively laid out by the standards seen i_. o_her Japanese labo-

ratorles, but lacking the quiet and privacy that researchers in U.S. laboratories
are accustomed to. We were also shown some very attractive conference and

seminar rooms. All in _Jl they h. ve made a showpiece of this laboratory on
an international scale. On the basis of all we saw, world-class research should

emerge from this laboratory. There seems to be a problem in attracting top

people for Division Heads because the job doesn't lead to much, since after

10 years the laboratory will be disbanded. Tanaka's stature has been needed

to pull off this operation, to get money from eempanies, to sell the concept

of high-T_, superconductivity and the optimism that there would be products

in the long term, to create the idea of a national collaborative r)rograrn with

many industries seriously committed to superconductivity. One of the barri-

ers to ISTEC is the belief of each participant company that it can do its own

thing independently if it chooses t,,. Japanese eempanies think that they do

not. need l_elp fron: vniversities or national laboratories to do the R&D neces-

_arv for their future products. We were very much surlz'rised that the contact

between an ISTEC researcher and his company was so small. Nevertheless the

companies contributing to ISTEC represent 50% of the Japanese GNP. While

many companies are skeptical about the value of ISTEC to their own operation,

they consider their payments to ISTEC as a tax for basic research that should

be done in Japan, and perhaps a consortium mode is the best way to get the

job done.

During our visit to ISTEC we were asked by the Japanese to explain the
MIT-LL-I/3M-AT&T consortium. The Jauanese can't understand the man-

agement structure of the MIT-LL-IBM-AT&T consortium, especially how a

researcher in one company can be managed by a manager at another loca-
tion, and in another company. This may indeed be a problem for the U.S.

experiment.

The Japvnese experiment (_reTEC) also has potential problems. The expec-
tations for the commercial exploitation of the high-T¢ materials is great. What

if no significant applications come wit.hi_, 10 years? The companies within the

consortium represent a significant ,_art of the Japanese industrial enterprise,

representing half of the industrial GNP of Japan.

MITI is very powerfl_l and can get companies to r_ly behind thi_ ministry.

The burea.ucr_'.cy in Japan o_ the MITI level is high powered. We don't have

anything like MITI in the U.S.

Of all the Japan('se companies, it is the Electric Power Companies that
are the most enthusiastic about ISTEC. Tanaka sees many applications ahead

fl_r high field nlagnets oiwrating at 77 K, especially the Maglev applications.

Some other exanxples inelu(le an apparatus to enhance tlm growing cf crystals
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by limiting the connection through reduction of eddy cmrent issues and SEMs

for identifying strains mad other distributed defects in materials. Because of

major differences in our population distributi, ms, levitated trains don't make
much sense in the U.S. but they do in Japan, so Maglev should be developed
there.

ISTEC--Nagoya

M.S. Dresselhaus

The r,mrning of June 7 was dmoted to a visit to ISTEC Nagoya. Members

of the JTEC team in attendance for the visit included M.S. Dresselhaus, R.

Dynes, M.B. Maple, J.K. Hulm, P.M. Horn, R. Quinn, and R.W. Ralston
and Paul Herer of the NSF. \Ve arrived at the ISTEC Nagoya laboratory on

time and were greeted by Dr. Izumi Hirabayashi, our host for the visit. Dr.

Hirabayashi is the leader or the Nagoj_a division which consists of himself, 8

researchers from companies and Dr. ttatsumi Mori (a visiting scholar) who was

finishing her Ph.D. at ISSP with P_ofessor Suite in organic superconductors.

Dr. Hirabayashi himself got his Ph.D. from ISSP in semiconductor physics and

had spent 1_ years at the Max Planck Institute at Stuttgart.
The ISTEC Nagoya division was located in the rented space on the top

floor of ,',he Japanese Fine Ceramic Center (JFCC) and was focused on re-
search on high c:trrent densities in the oxide superconductors. The laboratory

was very new and just getting started, though the people had already been

selected and were in place setting up equipment. There s_emed to be sufficient

space to accommodate the research, and the equipment w,ts all 1row and of

high quality. The use of rented space was to emphasize the finite lifetime of

the project. The location of this group in the JFCC building was intended to

enhance collaboration with ceramics experts at JFCC, to promote interaction

with regional industry and to make use of the excellent characterization equip-

mont a_,, expvrtis", at the JFCC. One of the rest:archers working on organic

superconductors bad her synth.,sis la.bo_atory in a utility area, away from the

main activity, presumably to provid,: space suitable for cr:_stal growt;_ requiring

minimum disturba,uce for a 7 day period.

The visit started with a detailed summary of the ISTEC overall organi-

zati(m, about which we heard more when we visited !STEC in Tokyo. The

reason fi)r siting a division in Nagoya was the lc,ng-ternl tradition of the region

in fine ceramics and the heavy dens:ty c)f industrial l)articipa.nts in this area,

'h('rel_y providing some regional interactions with xnemt>er companies. The
direct interaction bctw:.en ISTEC Nagoya mid industry w_t.snot yet well estab-

lished. AMl_mgh the ISTEC res_,archms ,:ppearc_ to b" w'ry knowledgeable
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about what was going on in the National Laboratories, they had little direct

contact with these laboratories, though they were working along similar lines.

It seems as if the visiting scientists are the b_:st _ource of technology transfer

between ISTEC and the supporting industrial laboratories. The coordination

between ISTEC Nagoya and ISTEC Tokyo took place through weekly visits

of Dr. Hirabayashi to Tokyo, by FAX and by electronic-mail. The visits of

ISTEC Tokyo people to Nugoya were less frequent. Of the 8 researchers from

the companies, 1 had a Ph.D., 2 had MS degrees and the others only had BS

degrees. The participating companies included: NGK Insulators, NGK Spark

Plugs, Toyota, Chubu Electric Power Company, Hitachi, Showa Electric, and

Kawasaki Heavy Industriez. It was very interesting to learn that some of the

participating compan:es wcre low tech comp.,.mxes, _nd in areas where we were

,mrpriscd to find interest in high-To superconductivity.

The first presentation was by Mr. Fumio Mizuno from the NGK Spark Plug

Company, who was doing studies on flux pinr, ing and weak link properties of

oxide superconductors. The work was fundamental and of high que.lity. It was

impressive that a spark plug company would be interestc ' "-I fundamental work
of this caliber. The detailed studies in_,olved the effect of dopants such as silver

m aO_,_cting flax pinning, and studying the behavior in different magnetic field

regimes for weak link Josepllson junctions: e.g., H < tI_la, H,.]j < H < H_2j,
etc. His measurements thus far were mostly on trans0ort properties. Even

though tie was only at _he MS le,lel, he seemed very knowledgeable about
the field and about what was going on elsewhere. He found 2 different types

of hysteresis behavior which he explained by d!ffercnceu in magr_ctic flux in

the grains and in _he grain boundaries. He silc,wed that doping with selected

dopants changed the weak link properties.

The second talk was by Hatsumi Mori, a lady researcher who was completing
her Ph.D. thesis with Professor Saito of ISSP. She was well informed on the

field and gave us a talk similar to the one we g_)t at ISSP from Saito. She

had set up a nice synthesis chamber and was _uccessflflly preparing materials.

Clearly her work would involve collaborations with resrarcheIs at other places,
beca,ase her work was quite different from that of the main thrust of the Nagoya

group.

We left a questionnaire about Japam:_se involvement m superconductivity
research with Dr. Hirabayashi, which he retur:l,'d the next day by FAX to our

hotel in Tokyo. Th9 visit to ISTEC Nagoy_z was very u:;rfi,1. Our hosts wore

w_ry gracious and esp_.cially helt)fitl.
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i B.1.4 Miyazaki Maglev Test Site (JR)

J. Hulm

:: We (John Hulm, George Gamota and Alan Engel) met xith Mr. Keizo Takeda,
i Chief of Public Relations of the Railway Technical Research Institute, at Tokyo

! Haneda Airport. We took an ANA flight from Tokyo to Miyazaki on Kyushur •

!; islands, about 90 minutes by air. Mr. Takeda explained that southern Kyushu

i is the "Florida" of Japan, with many palm trees and flowers, a favorite place

I fox' vacationers and honeymooners.

i From Miyazaki we took a car north to the Maglev Test Center, about 2
hears bv road. The drive along the coast was very beautifld. We 3topped for

lunch at a very nice restaurant overlooking the sea.
We arrived at the test center at 1 p.m., ill time to see MLU002, the latest

vehicle, make a test run along the 7 km test track, which is parallel to the

! shore and also parallel to a one meter gauge JR main line. A delegation of?

superconducting experts was taking a ride, including Professor S. Tanaka, the
director of ISTEC.

All controls for Mi.U002 are operated from a control building at the end

of the track. We toured this buikhng, which contains an elaborate computer

control system, as well as laborattnies for work on the vehicle and electronics

systems.

We also visited the power unit for the vehicle, which is a variable frequency,

3 phase, generator fed from the electricity grid, located about 2 km along the

track from the control building. The track itself is elevated on pillars, at an

average height of about 6 to 8 meters.

To permit the observation of the MLU002 vehicle at speed, a JR station

on the meter gage line has been equipped with an observation platfbrm on its

root', about 100 meters away from the Me.glev track, at about the midpoint of

the test track. The test track appears to be straight for 5 km and curved for

about 2 km- an emergency section which is sel:h)m used.

Later we took a ride on the MLU 002. On that day they were doing special

tests on the "landing gear" of rhc vehicle, that is tbr rvb',_cr-tired wheels or..

which the car lands on at low speeds when levitation stops. TLc nature of the

levitation force is that it increases with increasing velocity, as eddy currents are

induced in the track coils. Norn, ally the vehicle is started and after a certain

velocity is reached (_ 100 km/hr), th(, whe(els are retracted.

On this particular day, they were doing te:_ts on the rubl)er-tired lan(ling

wbeel,_ (these were adapted from a high speed fighter plane). Ess('ntially, tie

wheels were not retracte(l a,,,t the Sl)(.rd was run u1) to 200 kin/hr. V'/ith the

wheels down the, rid,' was not very sm()oth. With the wheels r(;tracted we wer('
told that a t)('ak velo,,ity of 517 kr,_/hr w_ls attnlm,d with a snx,lh'r v(,hic',('.
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We then had a two-hour technical discussion with Dr. Kanichiro Kaminichi,

Direc the Maglev Test Center, and Dr. Junji Fujie, the Deputy Director.

They gave us a technical description of the whole system (I had some experience

with it already). They answered all our questions freely and openly and gave
us some technical papers which gave detailel descriptions of the system. Some

of this information is covered in the JTEC report.

We particularly asked about the operating experience wPh the supercon-

ducting system. They said that the refrigerators had given more trouble than
the coils. I asked if the coil had quenched at speed. They said, yes it had, a

few times, but the land.ing wheels could be dropped immediately upon loss of
levitation.

As a result of the discussions and our interest in the superconducting system,

I was invited to visit the Railway Techv.ical Research Institute in Tokyo, to view

a separate superconducting system being tested there. I did so on June 1, 1989.

B.1.5 Natiom.: High Energy Physics Laboratory (KEK)

M.S. Dresselhaus

The morning of June 2 was sper.t ,,isiting KEK, the National Laboratory for
High Energy Physics, located in Tsukuba. 1 went out to KEK with Dr. John

Hulm, and we were joined by Dr. N. I,:ambe of NTT about half an hour after

we arrived at KEK, because he mis_ed the bus at Tokyo Station. He actually

arrived about 3 mimltes before the departure of tLe bus.. but there were nc

seats left and they wouldn't allow him to stand.

The first part of our visit to KEK was spent in a briefing in the visitor's

conference room by _ar hosts. The first briefing was by Professor Itiromi

Hirabayashi on SUlWrConducting magne*s. Dr Hirabayast-,i is the Direztor of

Engineeri:_g Research and Scientif!c Support for KEK and is known interna-

tionally Ior his work on superconducting magnets. The organization of tl:e

engin_'ering research and scientific support c_'nters at KEK i of interest in
its own right, insofiu as the engineering and construction _spects of Mgh en-

ergy phy.'dcs give emphasis and Frestige to the support activities in materials

and engineering, and they thrref¢,"e tan attract high quality people. A second

observation of note' is the very close coupling between thes, engineering aiad

materials p,'ople with industry, working w'ry closely with industrial engbleers

in advancing the state of the art and in developing industrially based applied

sup, rcond, .ctivity te-hnologs'.

Ttw use o_ ,,,uwrconducting magnets l_y the' high energy physics community
is Sol)hi._'tic;m'd anal extensive, thereby significantly advancing th[' staW of the

art of al)l_iie(I _:,qwrcon,hwtivity. ']:'he high energy pl b._i('s community creates
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a market for a product that makes high demands on superconducting tech-
nology and allows industry to rise on the learning curve to position them for
other potential commercial applications. The superconducting magnet group
at KEK was impressive in their careful and systematic approach to the engi-
neering of superconducting magnets. Their work on NbTi magnets employed
much of the basic know-how developed elsewhere, but by working closely with
industry, they were able to improve performance and reliability and to enhance
manufacturability. They showed work on the engineering of 10T supercon-
ducting magnets for high energy accelerator applications that were state of
the art. We also heard of research on the design of superconducting magnets
based on new materials, such as NbjSn and other materials, to prepare for
the next ge1_eration of higher field superconductor magnets. Not only were
they interested in producing superconducting magnets for Japanese accelera-
tors, but they were working on engineering designs for advanced accelerators in
the United States and Europe. Through their close coupling to the industrial
designers and manufacturers, the Japanese feel they can compete for contracts
on superconducting magnets for accelerators worldwide, and Japanese manu-
facturers have been quite successful in winning contracts in competition with
manufacturers in the U.S. and Europe. One very interest'ng thing we learned
from this visit was their redesign of the Superconducting Supercollider lattice,
with magnet designs that were quite different from those of the Americans. In
their presentation they emphasized advantages of their design from the point of
view of manufacturability. If the Japanese contribute money to the S,percon-
ducting Supercollider (SSC) project in the United States, the Japac,,_s_ would
want a corresponding fraction of the equipment development to occur in Japan,
thereby enhancing their technology and creating jobs for Japanese workers.

The second presentation was given by Professor Yuzo Kojima, Head of the
Mechanical Engineering Center and leader of the Superconducting RF group.
Prof. Kojima told us that he and his group were working on improvement of the
performance of tile niobium based rf cavities of the high energy accelerators.
By improving tile Q and tile voltage operating range, they have been able to
increase the operating energy of their electron-positron collider from 24 GeV in
_986 to 30.4 GeV in January 1989 with plans for 32 - 33 GeV expected by the
summer of 1989, by improving the quality of the surface of the superconducting
cavity material and by adding additional cavities to the acceleration track.
The key to their success in getting very high Q values is their ability to go to
high rf fields without field emission. This field emission effect has limited the
performance of the superconducting cavities at CERN. Their techniques include
attention to the purity of the Nb (they use solid Nb material for their cavities),
monitoring the residual resistance ratio and the surface morphology of their
niobium material. In their work they use various steps of surface treatment
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and polishing and they work in class 100 clean room environments, having the
appearance of a semiconductor laboratory, with workers in white suits, masks,
booties, etc. The level of cleanliness of the laboratories, the quality of the
workmanship of the parts, the lovely appearance of the welds, all contribute to
the quality of the product and the pride of the workmen.

After the presentatiops, we had a very efficient tour of the laboratories.
The Japanese were very open, showed us everything we asked to see, and werei
perfect hosts in every way. On the tours we visited 3 or 4 widely separated lo-

_ _ cations, including the photon factory, the name given to the Japanese national
synchrotron radiation facility. The photon factory had many people working
on the research floor, though the work seemed significantly less intensive than
my impressions from past visits to Brookhaven and SLAC in the United States.
I heard that once the high energy experiments at KEK were finished and their
high energy physics activities moved into a higher energy range at another lo-
cation (probably in the U.S. or Europe because of the lack of availability and
high cost of land in Japan and because of national priorities), the present KEK
accelerator might be converted to a 10 GeV synchrotron radiation source, which
could then be fully competitive or superior to the next generation of machines
now in the design stage in other countries. About 10% of the synchrotron radi-
ation facilities users were from industry, and most of the work they were doing
was in x-ray lithography and surface science. We heard also of a consortium of
22 Japanese companies working with KEK to develop a small synchrotron ra-
diation machine for application to lithography at the 0.2/zm scale for use by the
semiconductor industry. This consortium has built a working machine based
on conventional magnets, while NTT (in collaboration with Hitachi) has pro-
duced a working machine using a superconducting magnet, resulting in smaller
size for the equipment. With a cost of $200 M for the R&D for the NTT
machine, one might question whether this could be of commercial use by the
semiconductor industry. I got the impression that the KEK people feel that
as they proceed up the learning curve, the machine may become smaller and
more efficient. Having this technology (though expensive), may lead to further
dominance of Japan in the electronics field, and that seems to be the direction
along which they are deliberately heading.

In the U.S. there are also efforts to produce such a small size synchrotron,
first in the national laboratories, and second by IBM. It is my impression that
the national laboratory program in the U.S. is far behind that of KEK, while
IBM is trying to hang in. At this point it is not clear whether this approach

will become the state of the art for the next generation of semiconductor elec- ii
tronics, or whether some totally new (not as yet known) technology will surface
in time for use for the next generation semiconductor electronics. At any rate,
if the table-top synchrotron radiation machine should become the technology
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of choice, superconducting magnets could become more interesting as a com-
mercial product. For a variety of reasons, the U.S. has in the last decade lost
its leadership position in tile field of superconducting magnets, and also its
optimism about the field. It is significant that the U.S. industrial program in
superconducting magnets has not had the continuity of R&D and manufactur-
ing projects that the Japanese companies have enjoyed.

B.1.6 National Institute for Re._earch in Inorganic Ma-

terials (NIRIM)

Rod K. Quinn

In the morning of 6/6/89, Brian Maple and Rod Quinn visited the National
Institute for Research in Inorganic Materials (NIRIM). We were hosted by
Dr. Zenzaburo Inoue. Dr. Inoue was very enthusiastic about our visit but
the remainder of the contingent was more reticent. We were escorted to Dr.
Nubuo Setaka the Director of NIRIM who is famous for his work on dieanond

synthesis. Dr. Setaka graciously received us and visited with us for 10 minutes.
We were shown an overview videotape of NIRIM, including purpose, fuading
and technical highlights.

NIRIM is primarily a solid state chemistry laboratory which specializes
!:l synthesis, structure and microstructure of inorganic materials. In J'tpan
inorganic materials translates primarily into ceramics. NIRIM is organized
around a core group concept with each group having some technical project
goal. When the goal of the project is achieved members are absorbed into other
groups. The atmosphere seems very relaxed with no enduring institutional
themes. _i

Their high temperature superconductivity effort is part of the Science and
Technology Agency Multi Core Project, and consists of three core research
groups, under Dr. Yoshio Ishizawa. Researchers at NIRIM have an active pro-
gram for synthesizing and characterizing oxide superconductors. The effort
has been particularly successful in determining the crystal structures of the
rare earth- 1.3 and Bi- and Tl- based oxide superconductors. For example,
the crystal structure of TmBa2Cu3Or-_ was derived from Rietveld analysis
of x-ray diffraction data by Izumi et al. [52] The Rietveld analysis program I
which was written by F. Izumi was subsequently made available to researchers
throughout Japan. Another important recent development at NIRIM was the
discovery of superconductivity with T_ > 20K in the T'-phase compounds of
the type Nd2_x_zCc_SrxCuO4-y. These compounds are p-type superconductors

which are related structurally to the T-phase p-type superconductors of the
type La2_xM_CuO4-y (M=Ca,Ba,Sr,Na) and the new t-phase n-type supercon-
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ductors Nd2_xCexCuO4-y. Early photoelectron spectroscopy experiments by
researchers at NIRIM revealed the importance of electron correlations in the

high-To copper oxide metals. After presenting an overview of their program
Dr. Ishizawa introduced the project leaders for each core research group and

we were briefed by each.

Dr. Bin Okai discussed the group effort in research for new superconductiv-
ity materials. He apologized for the lack of results and stated that this effort
had not yet gotten started. On the other hand, the group had independently
prepare,' and characterized the ReBa2Cu3Or and the Bi quaternary phases.

Dr. Shigeyuki Kimura leads a team of 6 researchers in a single crystal core

group. They are growing single crystals of Bi and Nd superconducting oxides

by the floating zone method. They have no atmosphere control on their high

temperature furnace thus far but this equipment is coming.

Dr. Shigeo Horiuchi, head of the structure research core group, described

the most impressive work. They are looking at structure and microstructure

by x-ray diffraction, neutron diffraction and ultra high resolution electron mi-

croscopy. Dr. Horiuchi described some very nice work on the effect of substi-

tutional F doping for oxygen in BSCCO that raised Tc from ll0K to l13K. A

new microscope with 1/_ resolution will soon be installed in a new building
and will be used for these structural studies. A lot of the initial structure of the

superconducting oxides was done at NIRIM. Dr. Horiuchi discussed their work

on developing structural models and computer simulation of HRTEM images
for structure elucidation. A model for the modulated crystal structure in Bi-

Sr-Ca-Cu-O superconductors has been developed from HRTEM images. This

work is very highly regarded in Japan and the U.S.

B.1.7 National Research Institute for Metals (NRIM)

M.S. Dresselhaus

I We (John Hulm, Rod Quinn, Brian Maple, Paul Herer and Mildred Dressel-

. haus) arrived at ,NRIM promptly after lunch. On arrival, we were greeted by 5: members of the Laboratory. Most of the briefings were by Dr. Keiichi Ogawa,

fi' Research Director of the Surface and Interface Division, Dr. K. Nakamura, and

i. others. Dr. Ogawa gave us an overview of the NRIM laboratory which was es-
tablished in 1956 as a research organization under the Science and Technology
Agency (STA). The particular interests of NRIM are in (i) advanced materials,
rare metals, intermetallic compounds, synthetic materials with special order-

ing; (ii) rcliability of structural materials. In these areas NRIM is expected to

conduct exploratory R&D of new materials, to work as a core research insti-

tute for national projects, and to work jointly with industry and universities.
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The growth of the laboratory has been steady (about 4%/yr in budget), but

over the past 20 years there has been a slight decrease in personnel, and this
decrease has been taken in administrative and support staff. We heard that a

4% decrease in personnel would take place in all the national laboratories this

year, at NRIM and other similar laboratories, and in fact also in universities.

Right now the activities of NRIM were taking place at two locations: Tsukuba

I and Meguro. Soon the Meguro operation which was more than 3 times larger
• in laboratory floor space would be moving out to Tsukuba, with many new

buildings to be constructed on the Tsukuba campus. Of the approximately

450 people (about 350 scientific people) at NRIM, about 20 researchers were

involved in superconductivity research. The number of researchers at NRIM

can be supplemented by visitors and students, but these are quite few in num-
ber. With the advent of high-T_ superconductivity, there was an increase in

budget.
Some of the research loci at NRIM in superconducting materials were sum-

marized for us. Prior to the high-T_ discovery, NRIM was doing pioneering

work on a broad range of superconducting materials with a focus on the study
of new materials and the properties of multilayer superconducting materials

such as Mo/Sb with T_ ,-, 6 K and the intermetallic compound PdTe with

_ T_ ,-_ 7 K. With the advent of high-T_ materials, NRIM quickly moved into
this field and made its mark. For example, Dr. Hiroshi Maeda and his group

were the first to prepare Bi-based high-T_ materials. In addition to basic stud-

ies, the Bi-Sr-Ca-Cu-Oxide materials are being investigated for wire and thin

film applications. Some of the NRIM effort is also directed toward finding new

materials with even higher T_. values.

The NRIM superconductivity group is also developing superconducting ma-

terials for use in high field superconducting magnets. This is a leading labo-

ratory in the development of Nb3Al, and Nb3(A1-Ge) materials for magnets,

including the development of multifilamentary wire conductors based on these
materials. The NRIM researchers work with the various superconducting wire

companies in Japan to develop wire suitable for use in high field steady state

magnets (up to 20 tesla), and in pulsed field applications up to 80 tesla. The

NRIM group has the experience and resources to build test magnets of various
types and designs.

NRIM is part of a "Multi-Core Research Program on Superconducting Ma-

terials" set up by the Science and Technology Agency (STA) in 1988 to promote

activities among industry, academia, and governme with responsibilities in 6
are as:

1. theoretical research on the electronic structure and mechanism of super-

conductivity in new superconducting materials by computer simulations,
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_* 2. development of a data base for R&D in superconducting materials,

3. purification of reactive elements _md fabrication of raw powder materials

• with controlled structure for the new oxide superconductors,

_ 4. development of fabrication technologies for thin films possessing high-To

i' and high-J_,

il 8. development of fabrication technologies for new superconducting wiresand tapes by laser beam sputtering, rf sputtering etc.

_. 6. design and development of high field magnets, including a 80 tesla, long
(10 msec) pulse magnet, a 40T hybrid magnet in collaboration with the

i: Francis Bitter National Magnet Laboratory at MIT and other institu-
tions, and a 20 T large bore superconducting magnet.

The NRIM laboratory is especially active in the development of new supercon-

il ducting materials using the high field magnets. In the developmen_ of new su-

perconducting materials and high field magnets, their collaborations _re world-

wide (Karlsruhe, Grenoble, MIT, University of Iowa, University of Alabama).
:_ The NRIM laboratory also had close contacts with the NRIM laboratory, an-!
[ other STA sponsored laboratory, that was located nearby, and specialized in

i structural studies.
With regard to R&D on high-To materials, Dr. Kazumasa Togano showed

I us outstanding work on high-To wires using a variety of approaches, including
i' cold rolling to get alignment of the superconducting grains and the use of

ultrasonics in processing to break down grain boundaries.

i With regard to their R&D program on loa-Tc superconducting materials,

} they were actively engaged in achieving further advances with the filamentary

magnet wire. In this work, they had collaborated with 5 companies and hope

i to commercialize new prod'acts within 3 years: Kobe Iron and Steel, Furukawa,

_ Sumitomo Electric, Showa Wire and Cable, and Hitachi.

! Following the presenta.tions, we had a tour of the laboratories where we saw

! them working on wire development and prototype magnet development. We

i' were impressed by the excellent facilities, the level of the work and by its broad

The surface also had excellent collection of characterizationcoverage. group an

i instruments.

,i' In the thin film portion of the NRIM effort, they were making modulated

structures by Bi(Pb)SCCO, utilizing the large periodic strain field that is it:..-

duced. As in other laboratories, the NRIM researchers were working on the
' phase diagram of the BiPbSCCO compound to grow the high-Te phase pre-
[ dominantly. They were also introducing Pb and other dopants for pinning the

i_ vortices in BSCCO. As part of their film work, they were making artificially
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layered high-T_ materials using magnetron sputtering, and the reactive plasma
vapor deposition technique.

B.1.8 Railway Technical Research Institute (RTRI)

J. Hulm

I went to RTRI alone, as an outcome of the visit to the Maglev test site on May

30, 1989. RTRI is the Central R&D Laboratories of the ent':re Japan Railway

system. It is a large site with r_any buildings, and probably with at least

1,000 people. Entirely devoted to development work on trains, track, controls,
repairs and human factors, there is no equivalent in the U.S., but the Western

European countries have similar laboratories.

At RTRI, I met Keizo Takeda and Junji Fujie (from Miyazaki) and was

introduced to the President of RTRI, Dr. Masanore Ozeki who accompanied me

on a tour of the main laboratories. We visited the dynamics testing laboratory

for Shinkansen type vehi_.les, where the units remain stationary while the Theels

are driven by rollers under the train. This test unit investigates the dynamics

of various types of Bogie units and vibration problems connected with high

speed operation. This laboratory is part of the system tests for the planned

Bullet train speed-up which is targeted at about 300 km/hr.

Next we visited the Maglev test laboratory and saw a Bogie with 6 supercon-

ducting magnets and 2 refrigerators. The refrigeration systems were running,
obviously on life test.

I saw one of the magnet coils on another test bench. The conductor is Nb-Ti

stabilized with copper in about a 1 to 1 ratio and the filaments are 23 micron !
in diameter. The cable has 2300 strands of conductor formed into a 2mm x 1 ii
mm cable. Several Japanese suppliers were utilized, but no foreigners.

The magnet was built as a race-track, 1.8 meters long, 50 cm high and 25

cm wide. It consisted of 1,167 turns and the normal exciting current was 600

amperes. The magnet was potted in Epoxy and operated at 4.3K. The magnet

was normally run up at about 10 amperes/see. The maximum design current
was 800 amperes.

The magnet has been deliberately quenched several times, without harm.

It has also quenched at 600 amperes during vehicle tests for unknown re_sons.
The energy release is about 500 K J, which causes a temperature rise of about
100K.

The cryogenic system consists of closed-cycle refrigerator above the 3 coils

(on one side of the Bogie) and a 40 liter helium tank on board.
_: Apparently, the c, yogenics for cool down is supplied by external liquid ini-

tially. They said that liquid N2 is pumped in to bring the system to 77K.
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Subsequently, an external Toyota liquifier pumps in cold gas to bring the sys-

tem to 4.3K. (It amazes me, but every company in Japan seems capable of

supplying its own design of helium liquifier!) The Toyota liquifier is then dis-
connected and the on board refrigerators (Toshiba, Mitsubishi) take over the 5

watt cooling supply to the three magnets.
There is an on board liquid N2 tank which provides the shield cooling for

the cryostats.

MLU002 has operated over about 10,000 kilometers to date (about 1,000

_: trips on the test-line). The magnets quenched a few times in service -- they

_ _ could not yet identify the cause in all cases. Generally, the cryogenic systems

have given more trouble than the magnet coils.
We had a short tour of the materials testing laboratory, the acoustic labo-

ratory and we saw test work on standard meter gauge vehicles.
I was taken to lunch at a very nice French restaurant in Kunitachi. The area

is very pretty, apparently there is a small University nearby. The boulevard

was unusually wide and lined with trees. There were many bookshops, c_dds

and students on bicycles.
The lunch extended into midafternoon and we had a wide ranging discus-

sion on economics, technology, etc. President Ozeki has served as a Japanese

delegate to several UN and International conferences, and his International
knowledgc was extensive.

As far as Maglev is concerned, Ozeki said that they had made good progress,

but that they were competing with 150 years of technological experience in steel
wheel trains and much remained to be done before Maglev could be developed

as a full-scale system. Important items included the problems of switches be-

tween different tracks, electrodynamic drag at low speeds, provision of on board

power, and the aerodynamic _f tunnels at 500+ km/hr.

This visit was very informative and President Ozeki seemed pleased at my
interest in RTRI. Since I have been a railroad enthusiast all my life and have

_: previously spent time at the Derby laboratories of British Rail, it was a won-
_: derful opportunity to observe a superb modern engineering facility devoted to

trains.
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B.2 Universities
i.

B.2.1 Institute for Solid State Physics - University of
Tokyo

M.S. Dresselhaus

i Since the Institute for Solid State Physics (ISSP) is one of the leading insti-l
tutesforthestudyofsuperconductivity,allmembersoftheJTEC teamvisited
ISSP. Because of our interest in the high magnetic field facility, a tour of the
high magnetic field facility was orchestrated. The tour was led by Professor
Miura, who is the originator and guiding force behind the high field facility.
All members of the JTEC team were impressed by the world class megagauss ]
facility. With regard to research on high-T_ superconductors, the availability 1
of the highest magnetic fields in the world for research purposes provided ISSP
researchers the opportunity for exploration of the Hc2(T) curves over the entire
range of temperature.

The megagauss laboratory at the ISSP allows study of solid state phenom-
ena in the megagauss range, where various new phenomena are expected to
occur. For the case of high-T_ superconductivity, thi3 facility permits study
of the magnetic phase diagram for the high Tc superconductors, as mentioned
above. At the Megagauss Laboratory, pulsed high magnetic fields are gener-
ated by three different techniques: electromagnetic flux compression, a single
turn coil technique, and long pulse non-destructive magnets at somewhat lower
fields. The long pulse non-de3tructive magnets are set up in a user facility, with
experimental set-ups for doing optical, transport and other measurements. Spe-
cial equipment is also provided to carry out measurements on the time scale
appropriate to the available pulses. The truly state of the art research is carried
out in the megagauss facility using the single coil or electromagnetic flux com-
pression method. With the single coil method, there is a reasonable probability
to save the sample for multiple measurements in megagauss fields on the same
sample.

Following the magnet laboratory tour, we started the formal program on su-
perconductivity research at ISSP. Professor Fukuyama was our host and master
of ceremonies. He first introduced us all to Professor Tom Moriya, the Director
of ISSP, who earned an international reputation for his theoretical studies of
magnetism.

Professor Fukuyama then explained the organization of superconductivity
research at ISSP. Superconductivity has been an area of science priority in
Japan for some time. Starting in 1984, a 3 year project on New Supercon-
ducting Materials was initiated (1984-87), and with the advent of High-T_
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Superconductivity, this project was extended to 1988 under the heading High
Temperature Oxide Superconductors. Superconductivity studies are presently
funded under the heading "Mechanism of Superconductivity" for the 1988-91

'_ period. The transfer of information among the researchers is enhanced by a
"New Materials Forum" at ISSP which meets twice monthly to commu_;cate
up-to-date information in superconductivity research.

i The overview presentation by Professor Fukuyama was followed by detailed
presentations from several researchers. The first was given by Professor Y. Iye,i
who spoke about transport properties on single crystals. The research focusedon anisotropy phenomena, anisotropy measurements at high fields, pressure
dependence of T¢, flux creep effects, angular dependent phenomena etc. This
was world class fundamental research.

The second presentation was by Professor N. Miura, describing magnetiza-
tion measurements to study hysteresis phenomena and Hcf(T) over the entire
temperature range. The availability of megagauss fields allowed measurement
of H!_(0) = 40 -4-5T and H_(0) = 110 -4-10W giving coherence lengths of
_ab= 30.&.and _c = 10/_. These anisotropy values are in good agreer, len*_with
those obtained elsewhere, such as the IBM group, who have come up with an
anisotropy factor of 4.

The :'ext presentation was given by Professor H. Yasuoka on NMR studies
of high-T¢ superconductors. The presentation covered measurements of NQR
to probe the homogeneity of oxygen in the plane, and NMR measurements of
anisotropy of the Knight shift, and temperature dependence of T_. The unusual
properties of the l/T1 behavior in the normal state was emphasized. Supercon-
ductors were found to have very high-1//Tl values while non-superconductors
had low l/T1 values. This NMR work also was world class research.

The next presentation was by Professor M. Tsahikawa who spoke on ma-
terials preparation and characterization. Particular emphasis was given to the
temperature dependence of the specific heat, with comments that the jump in
C/T at Tc was a good characterization method for sample quality ":naddition
to x-ray, susceptibility and resistivity measurements.

This was followed by a presentation by Professor H. Takei who was working
on new oxide materials (e.g., NaxTirOz) with potentially interesting supercon-
ducting properties. The structure and normal state properties of this class of
materials was described. Another aspect of work in his group was the prepa-
ration of thin film materials. He described the preparation of BSCCO films by
a new solvent evaporation epitaxy (SEE) method. In this method the ingredi-
ents were used with KC1 as a plasticizer and an organic liquid which was then
applied to a substrate (e.g., single crystal MgO), then heated to 100°C to dry
the material and drive off solvent. Subsequent heating to ~ 915°C drove off
the KC1, leaving a single crystal film on the substrate. This method allowed
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growth of films in oxygen, and air, with a rapid growth rate. The method was

simple, allowed preparation of large a::ea samples showing sharp transitions at
,-_80K with p ,_ 300pcm at T_. Measurements of Jc on these thin films had not

yet been made.

The final talk was given by Professor G. Saito on organic superconductors.

This was an extremely interesting talk. Organic superconductors are produced

by suppressing the Peierls transition. The BEDT-TTF system was presently

the highest T_ organic superconductor system with Tc "- 10.4K. Leading work
in this field has been done in the USSR, Japan, U.S., and France. Professor

Saito showed us a large number of measurements on H_, anisotropy studies,

isotope effect; tunneling, thermopower, NMR among others. Many of the nor-

mal state and superconducting properties were strange. This looks like a field

of significant interest for further work. Professor Saito is an international leader
in this field.

Because of our next commitment which was a lunch meeting as the guests

of Mr. Chiba, head of the ERATO program, this most interesting visit to ISSP

was concluded in haste. We saw many world-class efforts here. carried out by

relatively few people who were very talented, were working very hard, and had

enough support to make progress. Researchers at ISSP may have reasonably

good continuity in their support, and they have a high degree of recognition as

professors of the University of Tokyo system.

B.2.2 Tohoku University

M.S. Dresselhaus

A visit to Tohoku University in Sendai was organized in connection with our

high-To Superconductivity JTEC study becausc it is one of the main university
centers in Japan for basic studies in superconductivity. The major part of the

superconductivity studies at Tohoku University are carried out in the Institute
for Materials Research, with an additional strong effort taking place in the

academic departments of the university located on the hill about 1 km away.
The interactions between the researchers at the Institute for Materials Research

and at the academic departments are strong.
The Institute for Materials Research is of historical interest to Japan in its

own right, as the first Research Institute that was established in connection with

a National University. The Institute was initiated in 1916 and was inaugurated

in 1919 as the Iron and Steel Research Institute, reflecting the early focus of
its founder and director, Professor Kotaro Honda, who was a pioneer in the

development of KS magnet steel, leading to the highest field magnets of that

time.In 1922,theresearchactivitieswcreextendedto non-ferrousmetalsand
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alloys, and the Institute was renamed the Research Institute for Iron, Steel
and Other Metals. The Institute continued under this name until 1987 when

it was reorganized and renamed the Institute for Materials Research, reflecting

the broader interest of the researchers and the progress of materials science

internationally durillg the intervening years. Interestingly, the first research

institute building was funded by the generosity of the Sumitomo family, and
the recent building (contair.ing a small portion of the original building for the

sense of history) was also funded by private sources, though government funds
were used to instrument the renovated laboratory.

In 1981, the High Field Laboratory for Superconducting Materials was es-

tablished and the laboratory is now the Japanese National laboratory _'orsteady

high magnetic fiel_ research. The activities of the Institute and the High Field
Facility are open to researchers from all Japan and also from abroad.

The research organization of the Institute for Materials Research is divided

into four divisions: Materials Property Division, Materials Design Division, Ma-

terials Development Division, and finally the Materials Processing and Char-

acterization Division, in addition to three special research facilities, the Irradi-

ation Experimental Facilities, the High Fidd Laboratory for Superconducting
Materials mentioned above, and the Facility for Developmental Research of

Ad,_anced Materials. The faculty organization bears some resemblmace to the

German system, whereby each Full Professor will have under him an associate

professor and one to three research associates in addition to several graduate

students and a few senior undergraduates. Thus a position at the Institute for

Materials Research is regarded as a very good position in Japan. The Institute

staff consists of 350, including 60 faculty members and 100 research associates,

50 visiting researchers including 10 from abroad. In addition to the 350 staff

people at the Institute for Materials Research there we:'e about 100 graduate

st_:dents with about ] leaving after an MS degree and ½ completing the Ph.D.
degree. In addition, there were about 50 industrial researchers working on "pa-

pers Ph.D. degrees" with faculty at the Institute for Materials Research. All in

all, there are 26 research groups each having a little more than 10 researchers.

They estimated that there were 100 people working on superconductivity at

Sendai, a little more than half associated with the Institute for Materials Re-
search.

Our main host for the visit was Professor Yoshio Muto, who heads up a large

national program in superconductivity and also a large program at. Sendal. In
addition, our main hosts were Professor Masashi Tachiki (solid state theory),

Prof. Yasuhiko Syono (chemistry), Prof. Tetsuo Fukase (experimental physics), i

and Prof. Norio Kobayashi (experimental physics). We were also welcomed by i
Prof. Masumoto, Director of the Institute for Materials Re,arch avd we vigned !
his visitors book.
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The morning of June 3, 1989 was initially unscheduled. Since the JTEC

panel members (Dynes, Ralston, Gallagher, Dresselhaus, Hulm) were anxious
to utilize this opportmfity to see more of the research activities at Sendal, Dr.

Nobuyuki Kambe of NTT helped us arrange a laboratory tour of the Institute

for Materials Research and their magnet laboratory facility. Dr. Kazuo Watan-

abe, who knew a great deal about the magnet laboratory, graciously showed us

around, and he explained a lot of details about the magnets, the experiments

in progress, and the research environment of tke facility. We owe him a debt of

gratitude for dropping his scheduled work for the morning to show us around.

Basically the high magnetic field facility has a number of Bitter magnets avail-

able for high field research, and is in mm a ways similar to the Francis Bitter

National Magnet Laboratory (FBNML) at MIT, though the variety of magnets
that are available is not quite so extensive as at the FBNML. In addition, the

magnet laboratory at Sendai has available a variety of superconducting mag-

nets, including three hybrid magnets consisting of inner polyhelix sections and

outer superconducting sections. The largest of the three is a world class magnet

providing steady magnetic fields in the 29-31 tesla range, approximately equal

} in performance to the hybrid magnet at the FBNML at MIT and the one at
Grenoble in France. This magnet can however be used only about six days a

month, because of the cooling requirements of tile superconducting coils and

_ the need to warm up tile magnet and to dry it out before the next series of

operations. We were told that. this limitation on the length of ava;lable time

on the hybrid magnet did not create major problems to users of the facility.

Magnet development R&D at Sendal and at the FBNML had some signifi-

i cant differences. Whereas the Americans designed and were involved in detail

i_ with the construction of the magnets, the Japanese were involved only with
the initial design and with the construction of a prototype. The Japanese then

contracted out to industry for the preparation of the superconducting magnet

I materials (Furukawa) and for the scale-up and construction of the actual mag-i nets (Hitachi, Toshiba). Thus, Japanese industry took over on the details of the

_ scale-up, the mechanical design, consideration of the stresses, loads, mounting,
etc, thereby transferring significant experience, knowhow, and technology to

i Japanese industry, especially in the area of superconducting magnet design.

i After the visit to the magnet laboratory, we returned to the conference
..: room at the Institute for Materials Research where we heard presentations of

I res,:arch activities at the magnet laboratory and elsewhere on campus on super-conductivity research. The morning session was mostly devoted to discussions
of materials science issues and the dependence of the resistivity vs. temperature

on a log p vs. (l/T) scale, measuring activation energies for various magnetic

field orientations, including both HII_3and H_I.& We also heard presentations

on the tiine dependence of tiw magnetization and the relation of this work to
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flux pinning and flux creep.
The scientific discussions were interrupted to gather for lunch and to meet

the Director of the Institute for Materials Research. As mentioned above, we

all visited Professor Tsuyoshi Masumoto, exchanged greetings and signed his

book, after which we went off to hmch. The lunch was hosted by the Americans

and took place in a first class French restaurant, with t.he 5 Japanese hosts in
attendance. In the evening the Japanese hosted a fancy dinner party for the

American visitors in a traditional Japanese restaurant. The social aspects of

Japanese hospitality still remain an important element in strengthening U.S.-
Japanese ties with long time friends and colleagues. During lunch we got into a

discussion on the growth of single crystals, and learned that theorists at Sendal

(and also elsewhere) where enlisted into the growth of single crystals because
of the shortage of people and the need for good materials. We learned that

.Tapanese theorists seem to have talent for growing single crystals of various
classes of materials, e.g., YBaCuO.

Returning to the laboratory after a very heavy lunch meal, we continued

discussions on basic superconductivity research in Japan. The first part of our

discussion focused on organizational issues. We heard that about 100 people

in Sendai were working on superconductivity. While the cooperation within
the Institute for Materials Research was very good and the cooperation was

also strong to the acadenlic departments, there had not been much coopera-

tion with people outside Sendai in tile past. We were told that this was now

changing, and that collaborative research with three industrial laboratories was

in progress (NEC, NKK and Casio). With regard to the High Field Facility,
of the research work was on superconduc_,ivity, much higher than the ratio3

at FBNML. Within the superconductivity prograrn, more than -23was directed
toward conventional super-toward high-T¢ superconductivity and less than

conductors. V_rethen attempted to come up with comparable metrics for the

superconductivity effort in Japan and the U.S.; after some discussion, we con-
cluded that it was very difficult to make the comparisons in terms of budget

figures, because the budgets were arranged so differently with regard to cost for
salaries, facilities, usage, etc. However, a comparison of level of effort seemed

more appropriate. After some discussion, they came up with the following table

of superconductivity personnel, estimated at 500 researchers plus 300 students

in Japan, geograpb;.cally distributed as follows.
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Hokkaido 3%

Sendal 20%
Tsukuba 5%

Tokyo 30%

Kyoto and Osaka 25%
Okazaki and Nagoya 10%
Hiroshima and Fukuoka 7%

We decided to try the same exercise with researchers in Tokyo to see if

we could come to some agreement. We heard that the advent of high-T, su-

perconductivity re_,eived a rapid response from the research community with I

major shifts in effort, and a corresponding reduction in activity in other fields.

Additional funding was however provided to make the transition rapid and ef-
ficient. We heard that there was little complaint in Japan about budgetary

reprogramming during the change in the directions of the superconductivity

research community.

Following this lengthy discussion on research organization of the Japanese

superconductivity program, we returned to scientific discussion on supercon-

ductivity. We heard a presentation by Professor Syono on systematic studies

of the T1 compounds regarding the relation between T¢, and the number of

CuO2 layers, the stoichiometry of divalent and trivalent species, and the rela-
tion between T¢ and the Hall constant. Professor Syono presented results based

on both the Tll and T12 systems, representing very careful and very beautiful

materials work keeping the number of Tl layers constant. From this canto esti-

mates of the correlation energy U ,_ 7eV and the hopping energy t -,- leV. This
work showed that increase of the number of CuO2 layers increased T_ at first,

but after about 3 or 4 layers the maximum T_. ,,_ ll0K was reached, consistent

with their measurements of the in-plane lattice constant, showing a maximum

hole concentration in the CuO2 layers at about 4 CuO2 layers. In related work,
Dr. Koike showed that the substitution of Lu for Ca in the Bi compounds re-

duced T, sat first, and then led to a superconductor-semiconductor transition

with our going through a non-superconducting metallic phase. This was fol-

lowed by a presentation by Dr. Watanabe on high magnetic field studies (Hll_
axis and H£_ axis) of critical current densities vs. magnetic field. Some of

the highest current densities reported in a magnetic field were obtained by this

group. In these presentations we also saw some of the most beautiful high res-
olution work, that we saw anywhere, led by Professor Kenji Hiraga working on
a JEOL 400 keV TEM, housed in an old building. The institute for Materials

Research also has a 1MeV high resolution TEM, but the resesrchers seemed to

favor working on the 400 keV instrument.

Finally Professor Tachiki presented a model for strong vortex pinning which

was developed to explain the effect of anisotropy on pinning and to explain
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pinning effects for small superconducting coherence lengths. Although the re-
searchers at Sendal did not s_m to interact strongly with researchers at other
institutes, there were strong interactions and good collaborations going on be-
tween workers at Sendai. This interaction contributed importantly to the high

quality of _he research.

B.2.3 University of Tokyo, Faculty of Engineering

M.S. Dresselhaus

After spending the morning at the Institute for Solid State Physics (ISSP)
in Roppongi, and having hmch with Mr. Chiba on the ERATO program, the
entire JTEC team took the subway to Tokyo University and walked from the

train station to the Industrial Chemistry Building where Professor Kitazawa

was located. Compared to industrial laboratories, the University laboratories

are old and dingy. But compared to most university buildings that I have seen

in Japan, the building where the Industrial Chemistry Department was located

was among the better-looking buildings.
Our discussions started with a presentation 0y Professor Kitazawa on how

hL got into high- Tc superconductivity research. In 1984, Professor Shoji Tanaka

had tile idea to start a special progrmn in Japan to look for new superconduct-

ing materials, with an intention to discover some higher Tc materials. To carry

I out this project he asked Professor Kazuo Fueki and Dr. Koichi Kitazawa to join
him in a special progrmn on oxide superconducting materials. There had in fact
been activity on oxide superconductors in the University of Tokyo Engineering
S, hool since 1976, but in 1984 new resources were brought to bear on this pro-

gram. The activities of the special program focused intensively on the study

of Ba(Pb,Bi)O3 compounds, their synthesis, characterization and properties

measurements, including transport properties (resistivity, Hall effect, Seebeck

effect), specific heat (to measure the electron density of states at the Fermi level

and the Debye temperature), optical properties (to determine the plasma fre-

quency, phonon modes by IR and Raman spectroscopy, interband transitions,

ultraviolet spectra), tunneling spectroscopy, neutron scattering and structure

determination. The Ba(Pb, Bi)O3 compounds had unusual normal state prop-

erties, includi,lg a low carrier density (--, 1021/cruZ), showed charge density wave

behavior, showed insulating behavior with a transition to a metallic phase by

doping, and superconductivity was observed in the metallic phase.
As it turned out, the funding for the oxide program was coming to an end,

and the group was celebrating the completion of the program with mixed emo-

tions, since in the three year period of the grant no material has been found

with direct promise for increased high--T_ above that for Nb_Ge which at that
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time held the record at 23.2K. This was also the time close to the retirement of

Professor Tanrka and Professor Fueki, and there were thoughts of succession
to the next generation of researchers. At the celebration party, a lady professor
Kazuko Sekizawa of Nihon University asked Prof. Kitazawa if he had read the
paper by Bednorz and Miiller, and whether he believed in their results. Ki-
tazawa had not heard of this paper but did remember this interchange after the
party w_ over. He subsequently gave the follow-up assignment to one of his
students, who not only studied the Bednorz-Mtiller paper but tried to repeat
the synthesis of their material. Because of their extensive experience in this
field, the Kitazawa-Tanaka group was in an excellent position to prepare these
ceramic oxide materials, characterize them, and carry out property measure-
ments. And thus it happened that when the MRS December 1986 meeting
took place, this group had a large amount of data to present, convincingly
demonstrating that a new family of high--To superconducting materials had
been discovered. The convincing verification of the Bednorz-Mfiller result was
a very important achievement, because a number of so-called high-To super-
conducting materials had been announced over the years., but the results were
never reproducible until the h:itazawa announcement at the MRS December
1986 meeting of the cuprate ceramic materials.

The first formal presentation to the JTEC team was given by Professor
Kitazawa, and it was indeed an excellent presentation. He first summarized
the impressive achievement of this small research group, including their iden-
tification of the superconducting pha_e La-Ba-Cu-O, their discovery of the !
(La, Sr)2CuO4 and (La, CahCuO4 materials, their studies of hole doping in i
the low carrier density sloped phase, studies of the strong anisotropy of the i
electronic and superconducting properties, the identification of CuO2 as the :_
conduction layer, the high-He2 values, the sensitivity of the material to H20
contamination, the effect of non-magnetic dopants (such as Zn and Li), the
relation between the plasma frequency, the hole concentration and the crit-
ical tempe ature, the phonon density of states, the anomalous Seebeck ef-
fect, the effect of oxygen non-stoichiometry on the electromc and supercon-
ducting properties, thin film processing by sputtering and sol-gel (alkoxide)
methods, synthesis of the Ba2LnCu3Or materials as T( -,, 90K superconductors
(where Ln denotes a lanthanide), the discovery of electron-doped supercon-
ducting (Nd, Ce)2CuO4 materials, the symmetry between electron-doped and
hole-doped superconductivity, the saperctmducting gap measurement by scan-
ning tunneling spectroscopy and the study of superconducting fluctuations near
T¢.

P,,,fessor Kit azawa then went on to dr,scribe their present re,_arch program,
which incl:_ded several areas, and a wide range of materials: (La, M):tCuO4,
Ba_LnCu:_O.-__.Bi2Sr_Ca, Cu,+lO,. electron doped superconductors and new
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superconducting materials. Scanning tunneling spectroscopy studies would be

continued to characterize surfaces, and would be combined with a newly ar-

rived MBE system to study vortex lines and the superconducting energy gap in
situ. The MBE system was also an essential ingredient for their new thin film

program. Basic studies on the critical current were in progress with particular

emphasis on the pinning of vortex lines in a high magnetic field and the relation

of vortex pining to the microstructure. The Kitazawa group, like many other

groups in Japan, were heavily involved with new superconducting materials

research, especially in the area of electron-doped superconductors, and the be-

havior of electron-doped superconducting materials under reducing conditions.

Their work on single crystal growth and anisotropy studies based on these single

crystals was continuing, with special emphasis on the (Lal-xSrx)2CuO4 family
for different x values using the flux growth and float zone methods, because

of the relative simplicity of the lanthanum cuprate system insofar as it has

a single CuO2 layer. Also under investigation is the superconducting-normal
transition in a magnetic field with particular reference to the identification of

the mechanism for the broadening of the transition in a magnetic field, ad-
dressing flux creep problems, fluctuations, and a model for the transition to a

superconducting glass.

Following the presentation by Professor Kitazawa, we heard a presentation

by Professor Uchida who is now an Associate Professor in the Engineering Re-

search Institute. Professor Uchida is heavily involved in studying the electron-

doped superconductors, with particular emphasis on studying the symmetry
between the electron-doped and hole-doped superconductors. He described

studies in (Nd, CeSr)2CuO4, an electron-doped superconductor first found by

Professor Akimitsu of Aoyama Gakuin University. Professor Uchida and Ki-

tazawa both described world class research work done by undergraduates in

their groups; because both Kitazawa and Uchida are young faculty members

and not so well established, they do not have so many graduate students and a

significant fraction of their research work is done in collaboration with under-
graduates.

The experience with the synthesis of electron-doped materials is signifi-
cantly behind that for the hole-doped materials. Professor Uchida and his stu-

dents are now trying to prepare single crystals of the electron-doped material

and are having difficulty with preparing homogeneous single crystals. For the
electron-doped superconductors, reduction, rather than oxidation, is needed to

achieve superconducting phases. Much of their work thus far has been on the

optical properties, where they have studied free, carrier and interband transi-

tions predominantly. Plasma frequencies for electron-doped superconductors

(wp ",, 0.geV) were found to be similar to those for hole-tyl,e superconductors

{typically wp -_ 1.1eV). Professor Uchida told us that with present materials,
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they had difficulty achieving zero resistance at To. He also told us that he had

difficulty in correlating the Hall coefficient with To, but did find that a change

in sign in the Hall coefficient as a function of doping level corresponded to
To=0.

Professor Uchida has also been working on the La2_xSrxCuO4 system for

large x (0.3 < z < 0.4) and they have also made sizable samples ofYBa2Cu3Or (2mmx
2mm x 0.01mm) for single crystal studies. He also has an effort in investigating

new and exotic superconductors, but have not yet made any interesting new
materials that are superconducting.

Following the presentation by Professor Uchida there was a brief discussion

of consortia. Our Japanese hosts were especially interested in the newly pro-

posed MIT-LL-IBM-AT&T Bell Consortium, though the ISTEC Consortium

and consortia in general were also discussed. Dr. Dynes emphasized that the

joint consortium between universities, government laboratories and industry

was quite different in concept from iSTEC and said its success would depend

to a significant degree on the skill of its management team. Professor Kitazawa
did not think that consortia were helpful to industry, but rather were a method

for getting industrial contributions for basic research. Professor Fukuyama feels

that the present is the time for basic research and strong interactions between

people at sites active in superconductivity research. We then went into a panel
discussion on opportunities and challenges of high-To superconductivity, with

R.C. Dynes and M.B. Maple serving as Panel Members from the American

side, and K. Kitazawa and H. Fukuyama serving as Panel Members from the

Japanese side.

Dr. Kitazawa made several points in his opening statement. He feels that

continued attention should be given to research on new superconducting ma-

terials, though this research is risky. While the short coherence distance is an

interesting problem hampering applications of the high-T_ superconductors, he
feels that some increase in Tc is possible, and is hopeful that sufficient advances

can be made to allow for applications to the electric power industry. He was

somewhat doubtful about applications to the el.ectronics industry, except for

SQUID applications. Kitazawa feels that the demonstration of a Josephson

switching effect would be needed to signal practical electronics possibilities,
and he feels that control of interfaces, grain boundaries, twinning effects, and

anisotropy effects are needed for further progress. Perhaps somebody will solve

the pinning problem and there will be other technical breakthroughs, but this

will take lots of effort and study.

In his statement, Maple emphasized the intellectual challenge and expresscd

hopes for technological applications. Hc emphasized materials as an essential

ingredient to achieving technological applications, and feels that this is where

the present effort should be focused. Maple then spoke to the interdependence
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of basic science and technology, with theoretical concepts leading to new ex-

periments which require new materials that lead to further theoretical ideas.
He would emphasize two research directions for now. Firstly he recommends

that we take presently available materials, and try to solve material problems

inhibiting technological applications, such as grain alignment, and flux pinning.

Secondly, Maple recommends looking for new materials, new dopants, devel-

oping materials to specifically satisfy a set of requirements, correlating desired

properties with materials parameters.
By this time Professor Fukuyama had to leave and Professor Iye took his _.

i place. Iye stressed basic research and didn't have too much to say about the '_!

applications, lye stressed the similarities of the high Tc superconducting ma-
terials to conventional superconductors with regard to their superconducting

:: 4

: properties (except for magnitudes of the superconducting coherence distance

I and the upper critical field values), but stressed the wide differences with re-

ga,rd to their properties in the normal state. He recommended giving attention

to that aspect, lye indicated that the main features of the normal state would
be clari£.ed within two years. A great part of the excitement about the new :,

high-Tc materials was in new physics phenomena which would be uncovered i

with regard to superconducting fluctuations and flux dynamics. Professor Iye
also emphasized the importance of looking for new superconducting materials.

The final opening summary was by Dr. Dynes who emphasized the speed at
which progress was still being made, and consequently the difficulty in looking _,

into the future. He emphasized the importance of the discovery of the electron-

doped superconductors from a theoretical standpoint, and studies made of the '

anisotropy phenomena, made possible by the increasing availability of good

single crystal materials. Dynes feels that flux creep studies should now be

emphasized, as well as studies connecting spin fluctuations, magnetism and l
superconductivity, with a major goal toward identification of the supercon-

ductivity mechanism in the high-T_ superconductors. Dynes also feels that a

significant effort should be given to studies of the normal state properties, again

emphasizing their unique features with regard to temperature dependence of

the resistivity, large correlation effects, and unusual Hall effect behavior. He

feels that substantial effort should go into understanding the superconducting

band gap, whether there is a gap, whether it is anisotropic in k-space, and why

optical, tunneling, NMR results do not agree.

The panel discussion was interrupted for a tom of Kitazawa's laboratory.

Much of the equipment was homemade and not _ncy. The laboratory was

extremely crowded, dingy and somewhat decrepit. Recently he had acquired

several pieces of commercial equipment which had made a big difference to his

;"_ operation, including a recently acquired Japanese-made SQUID magnetometer,

and a just-delivered MBE machine with capabilities of doing in-situ scanning
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tunneling spectroscopy. What was impressive about his laboratory was how
much he was able to accomplish with only a few people mad not-fancy appa-

ratus. His key to success was incredibly hard work, good organization of his

small group of very talented people, and good collaborations with others at the
University of Tokyo. Because of Kitazawa's success, there are many demands

on his time during the day and many speaking invitations in other locations.

To keep his research operation going, he typically returns to the laboratory to
work for 4 or more hours after dinner, and then is hack again in the morning
to deal with other demands.

Following our visit to the laboratory, the JTEC team and the Japanese

hosts went to the University of Tokyo Faculty Club for dinner to continue with

the panel discussions in a more informal setting. At this dinner p_ty, Professor

Kitazawa served as our congenial host. i

B.3 Industrial Laboratories i
.!

:i

B Fujit ,i.3.1 su !

R.C. Dynes

Fujitsu has two research laboratories, one at Atsugi and one at Kawasaki.
They are divided into five divisions titled Electron Devices, Communications,,!

i Information Processing, Electronic Systems, and Materials. The educational

background of the staff is 48% electronics, 20% physics and the remainder in
i other areas. In total they have about 1400 employees. This laboratory is noted

for its accomplishments in low-To superconducting digital circuitry.

We (R.C. Dynes and R.W. Ralston) visited the Atsugi laboratories on
Thursday, June 1. We left the Akasaka Tokyo Hotel at 7:30 am and took

the subway (Marunouchi line) to Shinjuku Station. We boarded the Odakyu

line train to Honatsugi and then a taxi to the Fujitsu Laboratories, arriving at

about 9:30 am. We were greeted at the entrance to the laboratory and ushered

into a conference room where we spent the remainder of the day (leaving at
approximately 4:00 pm). We were not shown any individual laboratories or

processing facilities and the day consisted of presentations and discussion.

We were initially greeted by Dr. Kurokawa, the managing director of the
laboratory, who gave us an overview of the general philosophy of the Fujitsu re-

search laboratories. In this overview he discussed superconductivity specifically

and said that he was not optimistic about the future of Nb--based superconduc-

tor electronics, in spite of the substantial success Fujitsu enjoys in this field. He

told us that there were about 20 researchers in the area of superconductivity at

Fujitsu and that he saw no likelihood of this increasing unless a major advance
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i

in superconducting materials resulted. He was rather discouraging and with
many of his people in the room during this discussion we noted a rather somber
tone.

Following this overview the technical presentations were quite upbeat and
impressive. Dr. Nakajima followed with a more technical overview describing
the size of the laboratories (1400 people) and the distribution of the programs
in electronics, opto-electronics and systems. Nakajima is a research fellow at
Fujitsu and had a good overview of the organization and technology.

Imamura next gave a Josephson devices overview. The program started
in 1975 on Pb-based alloys and changed to Nb technology in 1983. After
high-T¢ superconductors were discovered half of the 6 people went into high-
T_ research. Altogether there are four groups at Fujitsu working on high-T_
superconductors; these groups are:

1. High-T¢ films

2. Devices

3. Superconducting materials (ceramics)

4. Superconducting materials

The ambiguity between groups 3 and 4 reflects some competition between dif-
ferent organizations internal to the laboratory.

The accomplishments at Fujitsu have been most impressive in the past few
years, going from the demonstration of a Nb-A1203-Nb Josephson junction in
1984 to a 10K gate array in 1988 and finally a 4 bit slice microprocessor working
at 770 MHz and minimal power dissipation (0.005W). The central spark-plug
in all of this effort was a young man by the name of Kotami. He clearly was the
person who was the focus of these efforts and his grasp of all of the elements
of this program was impressive.

We were also exposed to other programs which were aimed at superconduct-
ing electronics. Thin film growth, novel field effect devices, superconductor-
semiconductor interfaces processing techniques and device applications all pointed
in the direction that this was one of the serious laboratories working in the area
of superconducting digital electronics. In spite c,f the somewhat gloomy intro-
duction by the laboratory director, we sensed an enthusiastic and very talented
staff. They showed no signs of slowing down.
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]3.3.2 Furukawa Research Laboratories

J. K. Hulm

The visit to Furukawa Research Laboratories, Yokoharna was made by John K.
Hulm.

Dr. Minoru Suzuki met me at the Akasaka Tokyu hotel and we went to
the laboratories by taxi and train. I met Mr. Shoji Shiga, General Manager
of the Superconducting Research and Development Department, Dr. Yasuzo
Tanaka, Chief Research Engineer, Superconducting R&D Department, and Mr.
Koki Tsunoda, a member of the superconductivity products department, New
Business Development Division.

The Furukawa central research laboratories is in an almost brand new build-

ing about a mile from Yokohama station. I arrived there at about 11 a.m. and
left at about 12 noon as Mr. Shiga had arranged a luncheon at a hotel near
the railroad station. I had to return to Tokyo after lunch in order to keep
appointments with oflqcials at STA and MITI; so the actual visit to Yokohama
research laboratory was quite brief.

Mr. Tsunoda described the most recent products in their line of super-
conducting wires and cables. These included a high current capacity Nb3Sn
conductor supplied to Lawrence Livermore Laboratory for Fusion coils, an a.c.
cable for 60 Hz application with 0.5 micron strands and an advanced high cur-
rent density cable supplied to the SSC. A full range of more typicai Nb3Sn and
Nb-Ti conductors was also available.

Furukawa has supplied a number of magnet coils as well as cables. These
include the Topaz aluminum stabilized detector coil for the Tristan accelerator,
and insert coils for high field magnets at NRIM, such as Nb3Sn and V3Ga tape
magnets. They have built a 4 tesla, 1.4 meter long dipole for a 8 GeV pion line
on the 12 GeV proton synchrotron at KEK, also a 2 tesla septum magnet for
the same accelerator.

It was mentioned that Furukawa had a joint venture with Oxford to build
MRI magnets in Japan. Apparently the main market share in this technology
is held by the three major electrical companies.

Mr. Shiga gave me a short tour of the superconductivity laboratories before
lunch. Most of the work at the Central Research Laboratory is focused on the
production of both thin and thick films and silver-coated wire of various high-
T¢ oxides. The laboratories seemed well-equipped with a variety of equipment
for producing thin films, ceramic samples and experimental wires.

There was no time for an extended presentation, but Mr. Shiga gave me
a set of notes on the general directions of their work. They are investigating
the various well-established problems of attaining high Jc in the oxides, in-
cluding weak links between grains, orientation of grains, thin films and melted
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materials.

They have made thin films by Physical Vapor Deposition, using multi-source
co-evaporation. By using O2 or O3 activation they have produced excellent

high-T_ films which do not require post-annealing and have T_ equal to 85K

in O3. The current density in the fihn was about 8×105 A/cm 2 but falls off
rapidly with a field parallel to the c axis.

They have deposited Y-Ba-Cu-O thin films in various flexible substrates

such as nickel alloys, with a copper stabilizer. J_ was > 10SA/cm 2 at 4.2K, but
only 2.2 × 102A/cm 2 at 77K, presumably in zero magnetic field.

They have prepared thick films of Y-Ba-Cu-O by various melt-texturing
techniques. Single crystals give quite high current densities in the thick mate-
rial.

They have made silver sheathed BSCCO wire. At 77K, J_ was about

104A/cm 2 at 1 tesla.

They made a small coil of silver coated Y-Ba-Cu-O using 0.5 mm diameter
wire. The coil was on display in the materials products exhibit room at the

Central Laboratories. It generated 33 gauss in a 10 mm diameter bore with a
current of 20 amperes.

They have estimated the stability diameter of Y-Ba-Cu-O wire as around

1,000 microns compared with <100 microns for Nb-Ti.

I got the impression of a vigorous program which will probably lead to some

new types of conductors in due course.

B.3.3 Hitachi (Kokubunji)

M.S. Dresselhaus

The Hitachi Central Research Laboratory at Kokubunji is located in a beautiful

wooded forest, in keeping with a tradition of the Hitachi organization of locat-

ing its facilities on sites of natural beauty. This central Research Laboratory is

one of 9 corporate laboratories, and was founded in 1942. The laboratory now

has about 1300 employees, studying microelectronics (41%), information sci-

ence (44%), and fundamental science (15%). The Central Research Laboratory i

at Kokubunji is organized into 10 Departments, and the Second Department,

now managed by Dr. Katsuki Miyauchi, is involved with the study of Super- _ iiconducting Materials and Electronics, among other topics. Almost all of the

available time was spent visiting the Second Department.

With regard to company char,_cteristics, the sales volume of the company
nearly doubled in the 1979-84 time frame, but has been almost static for the i

past 5 years as the company changed its emphasis toward information, com-

i munication systems and electronic devices (now 44% of their business), while

[,
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decreasing their emphasis on their other businesses; transportation equipment
and automotive components (10%), industrial machinery and plants (10%),
consumer products (17%), and power systems and equipment (20%). The net
sales of _he company (not consolidated) for the past year was $24.5 B, with a
net income of $700 M, while the R&D expenditures were $2.2 B, giving a ratio

of (R&D/sales) =9.1%. The number of employees is currently about 78,400,
with about 12,100 engaged in R&D, supported by their own laboratories at the
1/3 level and by Hitachi business groups for the remaining 2/3. The average
growth in sales for the past 5 years has been approximately static (at ~ 4%/yr),
while the capital expenditures last year were $6.76 B, or 27.6% of sales.

The Hitachi corporation promotes international collaborations through sup-
port of collaborative research with foreign institutions, a foreign visitors pro-
gram, support of international symposia, support of presentations of Hitachi
research at satellite meetings abroad (often on foreign University campuses),
and the newly formed satellite laboratory in California. For company employ-
ees, there is strong encouragement for self-study and continuing education in
technical areas, to keep technical employees current in the state of the art. The
philosophy of the company is emphasis on doing original, creative research with
a long time horizon, as exemplified in the widely-displayed caligraphy of the
founder of the Hitachi Corporation, Mr. Namihei Odaira, which they translate
as "_hough we cannot live one hundred years, we should be concerned about
one thousand years hence."

We were picked up at our hotel by Dr. Yasuo Wada, currently on leave
from Hitachi to serve as technical Manager of the ERATO Quantum Flux
Parame_ron Project (see trip report of ERATO progra_n in Section B.1.2). We
are well acquainted with Dr. Wada from the year he spent at MIT in Profes-
sor Antoniadis' group a decade ago. On the way to Kokubunji, he gave us
some background information about R&D at the Central Research Laboratory,
and clarified our schedule for the Hitachi visit. On arrival at the Central Re-
search Laboratory, we were welcomed by Dr. Ushio Kawabe, chief researcher
and manager of the Superconducting Electronics Research Center in the Second
Department. Dr. Kawabe has an international reputation in superconducting
research and kindly provided some general comments about R&D at the Hi-
tachi Central Research Laboratory and about the Superconducting Program

in particular. The Hitachi program is classified by the company as funda-
mental research, involves 30 people (10 in high-To research and 20 in low-To
R&D) in their Kokubunji laboratory. Tile research program xocu_es of three
issues: microprocessor, the superconducting transistor including wave func-
tion phenomena, and high-To superconducting materials research. In addition,
tile Central Research Laboratory is involved with the ERATO Quantum Flux
Parametron Project described in section B.1.2. Dr. Kawabe's overview presen-
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tations emphasized the superconducting transistor and the superconducting
phototransistor as notable achievements ix, the area of superconductivity.

The superconducting transistor is based on the proximity effect and is the
consequence of several years of basic research on the properties and functional
dependence of the proximity effect in superconductor - semiconductor - su-
perconductor junctions. The basic research program addressed such issues as
the dependence of the coherence distance of the superconducting electron wave-
function on the carrier density of the semiconductor and on the spacing between
the two superconducting electrodes. The effect of an applied magnetic field on
the attenuation of the proximity effect, through the breaking of the Cooper
pairs was also investigated. Through several detailed studies of the properties
of the superconductor - semiconductor - superconductor ;unction and mod-
eling of these propertie_ for several superconductors and semiconductors, the
superconducting FET was developed. This device has two superconducting
electrodes on a heavily doped silicon substrate, separ_.' .-d by a 0.litre gap.
The superconducting current is controlled by variation of the gate bias voltage,
which varies the carrier concentration in the semiconductor, and hence varies
the coherence length of the superconducting wave function. The present device
is based on a poly-silicon gate electrode and has a rather high resistance (> 10 _i
kf_ at 4K), which may be high for integrated circuit applications. This device !application is now being studied and further developed. During a laboratory
tour, Dr. Toshikazu Nishino gave us a very clear explanation of this work, and
made a very favorable impression on the quality of the people working at the t
Central Research Laboratory.

Another basic science project of the superconducting group concerned an

early demonstration of the Bohm-Aharonov effect, which is mainly studied
in the Advanced Laboratory Research Group. In this experiment, a metal-
lic (superconducting) overla_ er was deposited on a tiny toroidal ferromagnet
with dimensions of ,,_3#m and 5#m for the inner and outer diam_:ters of the
toroidal magnet. By use of electron holography, a phase shift between two elec-
tron beams (one passing through the hole of the toroid, the other outside the
toroid) was demonstrated when the Nb film overlayer _,vasin the normal state.
Below the superconducting transition temperature, the electron beam could
not penetrate the hole in the toroid, and an additional phase shift between the
two electron beams was observed. No specific device ar)p]!cadon for this basic
research was mentioned.

Characteristic of the superconducting FET and the Bohm-Aharonov stud-
ies, and their general interest in mesoscopic physics, is the use of extraord:a,ary
fabrication facilities for special small dimensional devices. This capability was
discussed intensively in Dr. Kawabe's overview talk and our laboratory tour
where we saw their fabrication facility for Joscphson arrays through a windo,v.
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Hitachi is one of tile three industrial laboratories (along with Fujits_l and NEC)

with very sophisticated technology in digital superconducting electronics. The

development of Josephson technology with refractory superconductors at the

Electru' echnical Laboratt)ry (ETL), a MITI sponsored laboratory, is a success

story of how a very sophisticated technology was developed at a national lab-

oratory, and by involvement of industrial researchers at an early stage of the

R&D program, the generic Nb/A1203/Nb Joscphson junction technology was

transferred effectively to three industrial companies for their potential commer-
cialization. One of the notable achievements at the Hitachi Central Research

Laboratory with this technology is a microprocessor with 2066 gates, using 5#m

junctions and 2.5/_m wires. Though lagging somewhat behind Fujitsu, the re-

cent leader in the field of distal superconducting electronics, the program at

Hitachi is impressive on the basis of international comparisons, and is beyond

anything takZag place in the United States. Dr. Kawabe has a rather positive

view about the future of digital superconducting electronics, and feels that at

least part of high performance future computers may have superconducting

components. It is apparent that Hitachi has a long term commitment to super-

conducting digital electronics. Further evidence for this commitment is the Hi-

tachi participation in the Goto ERATO-sponsored Quantum Flux Parametron

project, described in the ERATO trip report (§B.1.2).

Consistent with their commitment to superconducting electronics, is their

effort in high-T_ superconductivity, which is largely focused on high-To materi-

als research, especially to thin film studies. It is widely appreciated that control

of superconducting film technology will be vital to the application of high-To

superconductors to electronics. One of their major interests in the high-T_ film

research is the preparation of high-T_ fihns with high current density capabil-

ities on semiconductors, using low processing temperatures (e.g., 600°C). To

accomplish this, they showed us on the laboratory tour an electron cyclotron

resonance system employing an oxygen (02+) plasma so_rce and coevaporation

of Y, Ba and Cu using an electron beam gun and a triple hearth heating sys-
tem. Two separate vacuum systems were employed with differentml pumping

between the region where the metallic evaporation occurred and the oxygen

plasma source entered. The electron cyclotron resonance system operated at

875 gauss and 2.45 GHz, and both the metal and oxygen species were incident

at. 45 _ to the substrate. Good results were obtained for YBaCuO fihns using

temperatures as low as 510°C without additi_.mal annealing on SrTiO3(ll0)

substrates (To = 87K with J_. = 1 × 10'SA/cm 2 at 77K) where T¢ -,_80I( and

on Si (100) where T_ ,-, 63K. It appeared that work was progressing to fllrther

optimize this process.

There were also many other thin fihn projvcts. One of the more interest-

ing ones was an attempt to prepare thin fihns of the el_,ctron-doped high- T_
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superconductors (Nd,Ce)_CuO on an MgO (100) substrate using rf magnetron

sputtering, and good success was achieved. RF magnetron sputtering was also
used to prepare YBaCuO films and derivative films where ether rare earths

such as Er was substituted for Y. As we saw in many other laboratories, at-
tention was being given to the control of the microstructure to enhance the

critical current density. With regard to applications, the Hitachi researchers

were working on SQUID devices as well as a superconducting optical detec-

tor based on YBa_Cu3Or_x on a MgO substrate whereby light provided by an

optical fiber was incident on a photoconductive semiconductor, the proximity
effect between the superconducting electrodes could be varied. This concept

seemed related to the superconducting FET which was implemented in low-T_
materials.

The particular day of our visit was the first working day for the new Direc-

tor, General Manager of the Central Research Laboratory, Dr. Hiashi Horikushi,

in his new position. Dr. Horikushi is a specialist in the computer area. Despite
his very busy schedule for that day, which included hosting a dinner party,
officiating at a laboratory-wide celebration with fireworks, and a host of other

duties, he nevertheless found time to greet us and to give us an overview of

R&D at Hitachi. This day was also the first day for Dr. Miyauehi as Manager
of the Second Department, where Superconductivity Research was carried out.

We were quite surprised by the youth of the Manager of such a large depart-
ment, and were told that it is the Hitachi policy to promote their most talented

and energetic people to responsible positions during the most active period of
their careers.

Following a very intensive and stimulating visit, we were invited to dinner at

Shikitei, and extraordinary restaurant, where we enjoyed a wonderful meal with

stimulating conversation with Drs. Kawabe, Wada, Tsumita and Miyauchi. We
were pleased to see Dr. Norikazu Tsumita again and to learn that he was now

chief engineer at the Hitachi Odowara works, (officially called chief engineer

of the Magnetic Disk Media Engineering Department). Our hosts were very

interested in the impression of the American JTEC team on superconductivity
research in Japan.

B.3.4 Hitachi Research Laboratory (Ibaraki)

M.S. Dresselhaus

This visit to the Hitachi Ibaraki Research Laboratory was made with Dr. John

Hulm (Westinghouse etire(l) and Dr. Nobuyuki Kambe (NTT). We arrived at

the Hitachi Research Laboratory at 12:30 pro, on time, having just driven up
a womterful l)ark, rising to the high elevation where the research laboratory is
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located. Tile site is spectacular and has a commanding view of the countryside,
reminding me of the lovely Hitachi research laboratory near Tsukuba where the
Mechanical Engineering Department is located.

Our briefings started in the traditional small conference room. We had
a briefing of tile whole company by Dr. Motohisa Nishihara, Director of the
Hitachi Research Laboratory and Mr. Munehiko Tonami, Manager of Interna-
tional Relat'_ons of the Hitachi Research Laboratory. They spoke with much
enthusiasm about the Hitachi seminars held at MIT and Stanford, briefing
faculty and students of their technical R&D achievements at Hitachi.

The philosophy of the company is a long term view. Last year they had $25
B in sales, bringing them into 16th place in international rankings on business
size, with 38% of the business in electronics, 38% in materials, and 24% in
energy. They put 9% of their annual sales into R&D. They were very proud
of their management of R&D especially two approaches that they explained to
us. One is an Idea Express Program providing support for up to 6 months (at
about the $35K level in addition to salary) to try out new ideas. The money
for the Idea Express R&D is provided by pocket money from each Laboratory
Director, with a minimum of bureaucracy. In addition, they had a Feasibility
Test Program which provided support for 6 - 24 months with no budget upper
bound to do more intensive R&D on the good ideas. These are two mechanisms
used by Hitachi for accelerating the development of new ideas.

We then got briefings on the superconducting technology program, which
included generators, magnets, magnetic refinance imaging units, a small scale
synchrotron orbital radiation (SOR) project, superconducting electronics (Joseph-
son Junctions and superconducting transistors), and an exploratory high-Te
superconductivity progr,'un.

VCethen got a briefing by Dr. Shinpei Matsuda on the history of super-
conductivity R&D at Hitachi and their resulting Hitachi product line. The
R&D program started in 1962 with re,arch on Nb alloys and then got more
serious in 1967 when they started building superconducting magnets for mag-
netohydrodynanfics (MHD) systems. Then in 1970, they got involwA with
tile new magnetic levitation progr,'un and started developing superconducting
magnets for that type of application. Ttwir re_'arch on superconducting gen-
erators started about 1980, and their .lo,_ph_), device program in 1984. Aside
from superconducting electronics which is studied in tile Kokubunji labora-
tories, retest of the superconductivity re.,u-arch is 4on_. at the Hitachi Ibaraki
Re.arch LaboraTories, but significant activity al._)occurs in the Hitachi Works
(as they call their manufacturin_ centers) and in the Hitachi Wire and Cable
Company. one ,,f their subsidiaries. The most impressiv,, aspect of the Hitachi
l:rogram is tlwir historical record. Hitachi entered this te_ hnological field in the
early 1960's, at _ time when other COmlmnies like Westingh, m_ and GE were
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already well established. Hitachi got started slowly on the technology develop-

ment curve, got one contract that advanced them on the learning curve, and

then they had a steady sequence of one contract after another to advance them

on the learning; curve, eventually putting them in a highly competitive interna-

tional position by sustained support and long term follow-through. They now

hare about 40 people involved in superconductivity research emanating from

the Ibaraki laboratory, both on-site and elsewhere. We later saw a very similar

pattern at their competitor companies, Mitsubishi Electric and Toshiba.
Hitachi's sustained superconductivity work is largely focused on low T_ su-

perconductors and involves real products, magnets far vehicles, magnets for

accelerators, magnets for MRI machines and associated systems. The pro-

duction is continuous, so there is activity ranging from exploratory R&D to

development work, and a very small amount of basic research. They took us
for an excellent tour of their R&D laboratories and facilities. The Hitachi re-

searchers were hilly open to us and were perfect hosts in every way. We saw

a number of excellent progran_s, as we toured the laboratories, but perhaps

the most impressive was the very _ ._-., a 1,".f their R&D program .involving

many large laboratories with very ._L, amounts of sophisticated engineering

equipment. One large room was devoted to R&:D on rotating machinery, an-

other large laboratory was developing a 20T superconducting magnet based on
2 inserts into a main-frame magnet, each inert operated separately and based

on different superconducting materials. The engineering was very sophisticated

and methodical. The order and cleanliness c,f the laboratories was impressive.

Another project they were excited about was the R&D for the supercon-

ducting magnets fi_r the synchrotron orbit'al radiation machine (SOR), what

we call a table-top synchrotron machine, to be used for submicron lithography

applications for the semi-conductor industr.v. In getting into these new areas,

the Hitachi managers do not aim on making money right away. but rather on

developing their technology. The Japanese r,eem convinced that the senficon-
ductor manufacturers will tcq_fire table-tol_ SOR machines and arc investing

large amounts of money in d,'veloping these machines. The SOR nm,'hine that

was built for N I i" had a price tag of $200 M. At that price, Americans are
asking whether there may be a better technology.

After this part of the laboratory tours, we went to another location where
they had their high T,. superconductivity program. As a demonstratima th%

showed the usual l_'vitated high-T_ disk, but this time orbiting a track provided

by electromagnets and coils that were pha._d around the track. This was a nice

demonst rat ion of their Maglev (magnetically levitated train) concept.

Their "basic" high T, re.,_arch progrmn wa._ mostly on new compounds mid

on their charactr,rization. This was g_x_¢lsystematic materials re._,arch, highly

appropriate for re_'arch in an industrial company. They presented some strut-
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tural tbin film studies on the BiSrCaCuO system directed toward cuihancing the
T_ = 110K phase. They had significantly more emphasis on their wire program
than on their thin films. For example, they were making superconducting tapes

using a sliver tube for packing the high-To powders and then drawing down the
tubes to thin filaments (',- 5#m). They reported tapes based on T1BaCaCuO
with Tc = 120K and Jc _ 104 A/cm _, which once held the world record, but
was soon broken by achievements at other laboratories. They concluded that
the cold rolling process helped to produce preferred orientation of the grains
with their c-axes along the tape direction. They were doing good work on the
superconducting tapes and were optimistic about their approach for enhancing

Jc. As Dr. Matsuda said to us, if you are leading a group of researchers, you
had better feel optimistic.

B.3.5 Matsushita

M.S. Dresselhaus

Dr. Tsuneharu Nitta, Director of the Central Research Laboratory. received us
on arrival at the Matsushita International R&D Center and provided us with
an overview of the company and of the research laboratory Although Dr. Nitta
was very conversant m English, he preferred to speak to us (M.B. Maple, J.K.
Hulm, R. Qtfinn, P.M. Horn, Mildred Dregselhaus and Paul Herer) through a
translator, Mr. Shigeyoshi Moriyama, General Manager of the Technical Liai._n
of the International R&D Center, who designated himself as the JTEC contact
person at Matsushita.

Matsushita is the largest Japanese company in the electrical products busi-
negs with annual sales in the $38 B range, e.nd a growth rate of 7.6°A/year.
While Matsushita already has the largest market share of home appliances in
Japan, the company is now put ring more emphasis on factory automation, com-
puters and communication. In the home appliance area, they are pronmting
sale of kitchen systems, where each system could run in the range of $20K to
$40K per system. Whereas their overall R&D is at the level of 6cA,of sales, their
semiconductor and computer divisions has a significantly higher R&D level (_

10cA:of sales).
Although tim Matsushita management had no plans to u_ the high-To

oxide superconductors in a product in the fore._r'eable fitture, the company has
a long-term commitment to increa_ the level of understanding of the oxide

superconductors. Following his presentation to us, Dr. Nitta left for a business

meeting in Tokyo. As Dr. Nitta left the room, several of the key researchers

and managers entered, all attired in similar blue company outfits, as is common
in Japanese industrial laboratories to show that workers at every level are
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important members of the corporate team and all must contribute at their
maximum level of commitment to the benefit of the company.

Following the presentation of Dr. Nitta, we had some general discussions
about the Matsushita program on superconductivity by Dr. Was& Before the
advent of high--To superconductivity only one or two of the entire staff at the
Matsushita Central Research Laboratory. were working on superconductivity.

Their present significant, activity in superconductivity therefore represents a
reassignruent of about 30 researchers to superconductivity projects, about half

of these, being Ph.D.s. The overall R&D program at Matsushita is very broad,

supporting a huge range of products in consumer electronics, office automation,
audio-visual equipment, robots for industrial applications, home appliances,

communications equipment, batt,.ries, electronic components, etc. There za_

about 300 researchers in their Central Research Laboratory, working on a broad
spectrum of research projects. The remar,hers are divided into a Materials Re-
search Division, which is main'y involved with Ceramics and a Materials Science

Research Laboratory that is mainly concerned with thin films and devices. In

addition, the Matsushita Techtfical Research Cat,' "r provides valuable support

in the characterization of materials. The early" work in the Central Research
Laboratory dates back to 1960, when Matsushita started a research program

i on ceranfics, mainly of the perovskite structure, and in this period some of the

l_ioneering research on the sputter deposition of thin ceramic films was carried

out by Dr. Nitta and his group. Dr. Wasa was a pioneer in the development of

the magnetic sputtering technique. An important achievement of the labora-

tory was the first synthesis of single crystal thin films of Pb-La-Ti-O which they
called PLT films. In 1980 they started work on artificial metallic, supercon-

ducting and ceramic supcrlattices, exploiting their experience with sputtering

and thin film technology. Thus, it is easy to see why the researchers at Mat-
sushita were well positioned to respond to the announcement of the discovery
of ceramic high- T_ superconductivity.

When asked about their ideas for product applications of the high Tc mate-
rials, the Matsushita leaders did not have too many clear plans. Some of their

thoughts included high speed input devices for information systems, high den-

sity" memories based on magnetic flux quanta, and interconnects to silicon. The

Matsushita leadership was targeting their program to 77K applications for the

next decade and perhaps room temperature applications at a future time. The
Mat sushita re,archers did not feel that the oxide superconductors would be
umful for large motor applications, largely because of reliability considerations.

Mr. Shun-ichiro Kawashima, Senior Researcher in the MateriMs and Ap-

i plications Grou> of the Central Research Laboratory, provided an overview

of their high.-Tc materials l,rogram which was directed towards the search for ]

new superconductors and their characterization, the identification of the crystal i
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structure of the compounds (they were one of the early groups to identify the
crystal structure of some of the Bi-Ln-Ca-Cu-O phases), efforts to increase the
number of CuO2 layers per unit cell, study of the relation between fabrication
conditions and superconducting properties, and isolation and properties study
of the "2223" TI compounds with T, _ 120K. In their quest for new supercon-
ducting materials they told us that they had independently discovered 4 new
oxide superconducting compounds at Matsushita and had characterized them.
Mr. Kawashima then went on to describe the relations between the Matsushita

Company and ISTEC. Thus far Matsushita had sent one of their researchers
to ISTEC, and had only weak ties to this employee who was based in Tokyo
and was working on fundamental research on the high-To oxide superconduc-
tors, unrelated to anything he had done previously at Matsushita, nor related
to anything of direct interest to the company. In terms of interaction, this
employee was obliged to send one short report per month to his supervisor at
Matsushita. The company's expectations were to contribute to the enhance-
ment of world knowledge, to enhance the background of the visiting researcher
who would then transfer this knowhow in some general way to the company.
They did not have any expectations for any short term benefit to the company,
despite the large amount of money they were contributing to ISTEC.

Following the general talks by Dr. Nitta and Dr. Wasa, several researchers
presented more detailed presentations of their on-going work. Mr. Hideaki
Adachi, a researcher from the Materials Science Laboratory described his 4
target layer by layer sputter deposition system for preparation of Bi compounds
with the "2212", "2223" and "2234" phases. His objective was to increase the
number of CuO2 layers in a controlled way and he was having some success
with his system. Similar work was also going on for the T1 system, where they
reported success with the growth of 5 CuO2 layers. This was an impressive
achievement. In addition, Mr. Adachi was preparing Nd-Ce-Cu-O thin film
electron-doped oxide superconductors with a Tc ", 17K.

The next speaker, Dr. Shin-ichino Hatta, a Senior Researcher at the Mate-
rials Science Laboratory, spoke about his work on flux creep behavior in the
TI-Ba-Ca-Cu-O system and showed some interesting results on time dependent

i magnetization effects.The next speaker was Mr. Hidetaka Higashima, another researcher from
the Materials Science Laboratory, who spoke to us about his work on three
terminal high-To superconducting devic,:s with dual gate electrodes. His work
was based on BSCCO, and since his T¢ was only 69K, his devices could not be
operated at 77K, a temperature of obvious interest for commercial applications.
He also told us that he had not been successful in preparing any good tunnel
junctions.

The last talk was again given by Dr. Kiyotaka Wasa, general Manager of
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the Materials Science Laboratory, who had spoken to us before. Dr. Wasa is a
good friend of my colleague Dr. Ko Sugihara, who had spent his entire research
career at the Matsushita Central Research Laboratory, before coming to MIT
after his retirement. Dr. Wasa started his talk with friendly greetings to and
from Dr. Sugihara. Dr. Wasa's presentation was on the low temperature growth
and deposition of high-T_ materials on Si using various barrier materials at the
interface. He reported that the Matsushita researchers had succeeded in pro-
ducing a c-axis oriented film using a Pt layer at the interface. The work on this
project was mainly being done by a visiting lady scientist from the University
of South Carolina, whom Professor Maple knew. I had also previously heard
about her through Professor Datta, a Professor in the Physics Department at
South Carolina, and the author of a book on high-To superconductivity. In his
presentation, Dr. Wasa emphasized the materials science problems of lattice
mismatch and interdiffusion which complicated the deposition of ordered films
on the Si substrates.

The superconductivity program at Matsushita was quite new, and was mak-
ing good progress. Because of their leadership position in consumer electronics,
the Matsushita management felt that the company must be involved in high-T_
superconductivity research, although they had essentially no prior experience
in superconductivity.

B.3.6 Mitsubishi Electric Corporation

M.S. Dresselhaus

Our JTEC group, consisting of John Hulm, Brian Maple, Paul Horn, Paul
Herer and Mildred Dresselhaus, arrived at the Mitsubishi Central Research
Laboratory about 12:30p.m., a half hour before our scheduled arrival. Thus we
had lunch with Dr. Masatami Iwamoto upon arrival.

As a result of the lunch, we arrived back to the central research laboratory
approximately half an hour behind schedule. We then proceeded with their
scheduled activities. First we saw a movie on the Mitsubishi electric busi-

nesses, including space development, Communications and Information Pro-
cessing Systems, Electronic Devices, Energy, Transportation, Large scale Build-
ing Equipment and Systems, Industrial Equipment, Audio-visual Equipment
and Home Electronicz. Because of their heavy involvement with superconduc-
tivity equipment and materials, Mitsubishi electric was one of the companies
of particular interest to us.

After the film was completed, our hosts asked for information from us. I ex-
plained the ground rules of our JTEC study, which was followed by an overview
of tile IBM R&D program on superconductivity, and their particular interest in
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possible superconducting electronics applications. Our hosts then asked about
the IBM-AT&T Bell-Lincoln Lab-MIT Superconductivity Consortium, which
Paul Horn explained, and of course there was great interest in the consortium
on the part of the Mitsubishi people.

Following Paul Horn, Rod Quinn gave an overview of superconductivity
research at Los Alamos, followed by John Hulm, who made some comments on
the Westinghouse program. The number of researchers in supercond,mtivity on

_ the U.S. side was gives as 65 at IBM, 30 at Westinghouse, and 60 at Los Alamos.

_il We heard that 3 Mitsubishi Electric researchers were sent on assignment to
i ISTEC and we also heard that two members of the Kobe works joined a study
[ •

i for the SSC magnet design. Of the researchers sent to ISTEC, two were from
the Central Research Laboratories and one was from the Materials Research

Laboratory
Dr. Iwamoto then gave us an overview of the Mitsubishi Electric Program on

Superconductivity which was very extensive. At the Central Research Labora-
tories they were concerned with Applications, Cryogenics, and SQUIDs. Their
cryogenic program started in 1958, 37 years after the start of the company -i

in 1921, leading to the first successful liquefaction of helium in Japan in the
early 1960s. Since that time Mitsubishi has been heavily involved in developing
refrigeration systems for research projects for the Electrotechnical Laboratory
(ETL), for the Japanese Atomic Energy Research Institute (JAERI), as well
as commercial refrigerators and liquifiers. Liquid helium refrigeration systems
could be an important business for supplying helium for superconducting ac- _
celerator magnets, magnetic levitation applications and superconducting gen-
erator sets. Their Josephson effect program started in 1970 and under MITI
sponsorship Josephson integrated circuits and mixers were developed.

Research on conventional superconducting materials for wire applications
has been active and sustained since 1961 with particularly good work done on
the development of fine filamentary wires, the R&D on Nb3Sn wire for magnet
applications and building practical magnets on these wires, enhancing the state
of the art with the Nb-Ti materials by alloy additions and processing. Their
work on superconducting magnets dates back to 1961. They were fortunate
in having had a series of contracts to build various superconducting magnets
dating back to about 1964, which allowed then to get on top of the state
of the art in this field. The projects included building a Nb-Ti-Ta solenoid
for ETL, a Nb3Sn quadrupole magnet for KEK (The Japanese National High
Energy Physics Lab), a magnet for plasma fusion applications, a large cable
coil for MITI, a pulsed magnet with 200T/sec capability for the Institute for
Plasma Fusion, a forced cooling coil for JAERI, among others. This steady
construction bllsiness has significantly added to their technical know-how, and
put them in an excellent position to supply MR! magnet systems when that
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market opened up. In parallel with the magnet construction is a history in

magnetic levitation R&D going back to 1969 and continuing into the future,

involving the construction of both the magnetically levitated vehicles, but also

the refrigerator systems. Of course now they are looking into the possibility

of using high-T, materials for magnetic levitated train applications. Although

the application may be years in the future, they do not want to be left out of

the race in this technology. In presenting the actual overview, Dr. Iwamoto

carefully laid the historic achievements in perspective.

The presentation by Dr. Iwamoto was followed by a presentation by Dr.

Takashi Noguchi of the Central Research LaboratoI_r who described their SQUID

device work which until now was with conventional superconductors, and was

aimed at giving lower performance by reducing junction inductance and capac-

itance. He showed that the SQUIDS could give magneto-cardiogram signals

as good as the electrocardiograms we are accustomed to. We were told that

the researchers at Mitsubishi are now trying to make SQUIDS with high-To

materials. Dr. Noguchi then described their thin film program which was quite

extensive, with 10-15 people engaged in this program. They were making both

the Y-Ba-Cu-O and Bi families of thin films by a variety of techniques including
sputtering, reactive evaporation, MOCVD, laser PVD among others and they

were getting respectable J_ values (5 x 10SA/cm 2 for Y-Ba-Cu-O at 77K) and
were having some success in a magnetic field up to 1T, but large dips in J, above

that level. Their goals for the SQUID were for ferromagnetic applications, low

noise RF amplifier, mixers and magnetic scanning.

We then heard from Dr. Ken Sato, manager of the Metals and Ceramics De-

partment. He first described the doping experiments to enhance the field range

achievable with the Nb3Sn magnets. He described one where T, additions were

used to achieve a 12-16T superconducting magnet, also under development is

a hybrid magnet operating in the 18-20T range but using a wire based on a

chevrel phase material (PbMosSs) prepared in wire form by a powder process.

This work on magnet wires based on chevrel phase materials was pioneering
and could lead to some technological advance.

Wi_,h regard to the high-T_ materials, there was ongoing work on thin films,

thick films, bulk materials and characterization and evaluation. They were

using an ionized cluster beam method invented at Kyoto University with some

success and they were using MgO and MgTiO3 substrates.

For their thick films, they were using a sol-gel process and were having

difficulty with removing all of their carbon in the processing. For the wire con-

ductors, they were using a five particle deposition and sol-gel method. Their

emphasis was on fundamental problems of grain growth and flux motion. They

had not made coils. They said that they would soon be making multifilamen-

tary high-T, wires.
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B.3.7 NEC

M.S. Dresselhaus

ThisvisittoNEC wascarriedouttogetherwithDr.WilliamGallagherofIBM.
We weremet attheMiyazakidaistationbyMr. KoichiYoshimi,who thentook
us by taxitothenearbyNEC CentralResearchLaboratorywiththeusual
Japaneseefficiency.There,we weregreetedby ourchiefhostDr. Michiyuki
Uenohara,DirectorofResearchoftheNEC CentralLaboratory,who briefly
explainedthegoalsofthecompany inhome electronics,_I:-tronicdevices,
computersand communications.The historyofthecompany m :ommunica-
tions,datingbackto1899,was reviewed,aswas therecentgr_,'.vthintothe
new areasmentionedabove.The annualsalesofthecompanyarenow $22B,
with100,000employees,having70% oftheirbusinesswithinJapan,and 30%
abroad.Theirresearchlaboratorieshaveabout1000employees,withabout
I% ofthetotalNEC annualsalesgoingintoR&D aimedatlongtermresearch
(theday aftertomorrow)and 9% goingintoshortertermhorizons(tomorrow
and today).Althoughwe saw someexamplesofbasicresearch,thefocuswas
verymuch on R&D withperceivedrelevancetopotentialproducts.Afterhis
presentation,Dr.Uenoharahad toleavebecauseofhiscommitmen_.totheori-
entationofa new cropofengineerswho had justjoinedthecompany. As is
theircustom,Japanesecompaniestakethiscompanyorientationandeducation
programveryseriously,and toppeopleinthecorporationareinvolvedinthe
process.

Followingthesemore generaldiscussions,our otherhostDr. FujioSaito
gaveusa presentationon theNEC overallSuperconductivityProgramwhich
includedthreemajortopicalareas:materialsscienceand physics;thinfilm

processingand finallyapplications.Withinthe realmofmaterialsscience
and physics,many subtopicswerelisted:synthesisand structure,transport
and magneticproperties,tunnelinginhigh-_ materials,bandcalculationsof
high-Tomaterials,therelationbetweenoxygenstoichiometryand materials
properties,rareearthsubstitutionstudies,collaborativestudieson magnetic
structure,energygap anisotropystudiesby tunneling,among others.Forthe
thinfilmprocessing,severaltopicswerelisted,includinga rangeofprocessing
technologiestheywereworkingon,such_splasma-assistedvapordeposition,
RF magnetismsputtering,ionbeam sputtering,electronbeam vapordeposi-

tion,and chemical vapor deposition. They were giving significant emphasis i
to thin film growth and characterization, with potential device applications '
as their R&D impetus. Particular attention was given to epitaxial growth of ;1
high-To materials on Si wa_ers, and they were very proud of their outstanding _
achievements in this area. Their applications work was significantly focused _1

on microfabrication and patterning, with major efforts in reactive ion etching, :1
i

i

210 i
i
J

t

1990013093-229



ion implantation, and fine line fabrication. They noted their extensive past
experience in ceramics technology and the importance of this background to
their advances in processing technologies and microfabrication.

This overview was followed by a request for me to explain in some detail
what was the objective of the JTEC Study on High-To Superconductivity and
for Bill Gallagher to give an overview of current superconductivity research
at IBM, including advances not yet published. They reciprocated with an
overview of more in-depth discussion of 8 topics, almost all on wurk already
published. We were not invited into their

Dr. Sumio Iijima, senior research manager of their Exploratory Research
Laboratory, gave an interesting presentation showing some wonderful electron
microscopy results for electron beam induced preferential atomic motion of
species in the amorphous phase relative to the crystalline phase. The results
were shown for high-T_ superconducting materials as well as for other materials.
Dr. Iijima also spoke about crystal structure determinations of high-T_ materi-
als. Their efforts to correlate microstructure and superconducting performance
were of limited success.

Mr. Yoshimi Kubo then described their studies relating oxygen uptake to
T_, the superconducting transition temperature, for various Bi compounds in-
cluding "2201", "2212", and "2223" phases. As also shown by many others,
relatively small changes in oxygen concentration had large changes in T_, and
the effect was much larger fox-some high-To phases than others. A good corre-
lation between c-axis lattice constant and T_ was shown.

Dr. Jaw-Shen Tsai, one of their best known researchers, gave an interesting
presentation on his studies of the anisotropy of the superconducting energy
gap based on tunneling spectroscopy studies. He introduced a clever method
for cleaa mg high-To materials and introducing a Pb layer near the high T_
film surface for making tunneling measurements on the Bi high T_ materials.
Systematic differences were seen for tunneling into (001) and (110) faces , and
these differences were attributed to an anisotropic energy gap. The results
were promising in terms of the temperature dependence of the energy gap,
but the error bars were too large to yield a definitive functional form for the
temperature dependence of the superconducting energy gap A(T). Dr. Tsai
was also very active with Josephson junction applications, but did not talk
about this work.

Mr. Hisanao Tsuge, manager of their Advanced Device Research Labora-
tory gave a very nice presentation summarizing their microfabrication tech-
niques using ion beam etching, focused ion beams, reactive ion etching and
patterning by ion beam implantation. Many of their processing steps stem
from their experience with ceramics and ferrites. He showed a 0.8/Jm stripe
that was a millimeter in length with excellent uniformity. Careful evaluation
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of performance (Te and de) was made at a function of the width of the stripes;
no change in Te was observed for widths above 1.3_tm and no change in Yc for
widths above 2.3_tm. They attributed degradation of superconducting proper-
ties in the thinner stripes to inhomogeneities in thin film materials and not to
damage due to their processing steps.

Mr. Tsuge then showed examples of their processing technology applied
to low-Te Josephson junctions. They were especially proud of their non-
destructive readout capabilities in Josephson junction 1 kbit RAM devices,
which they felt were at the state of the art. They provided some comparisons
between the performance of their memory chips with those of Fujitsu and the
Electrotechnical Laboratory (ETL) in Tsukuba.

A review of the NEC work on Bi thin film high-To was presented by Mr. Tsu-
tomu Yoshitake, including coevaporation, ion beam sputtering and RF sputter-
ing, which they found to yield the best films. Their work was very systematic
and was significantly directed toward establishing the conditions for enhanc-
ing the 110K phase in relation to the 90K phase, and they showed significant
success. Though their work was very good, comparable efforts exist in other
laboratories in Japan and elsewhere.

Mr. Y. Miyasaka gave a very interesting presentation on their work with
epitaxial growth of high-Te films on Si. This work was exceptional and should
be so cited in the report. By preparing a buffer layer of MgAI204 (spinel
structure) on (100) Si they are able to get good epitaxial growth (a = 8.06A
for the spinel which is approximately (-_) the lattice constant of 5.43._. for Si).
On top of the spinel they deposit a thin layer of BiTiO3 or SiTiO3 by RF
magnetron sputtering, forming the substrate for the "123" high-Te materials.
The best samples were made through a collaboration with Dr. T. Venkatesan
of Bellcore, who prepared last,' sputtered "123" films on these NEC substrates
(1000A Y-Ba-Cu-O, 3500,_, BaTiO3, 750A MgAI204) achieving Te = 86K with
very sharp superconducting onset, and excellent de values both at low T and
at 77K.

Dr. $hinji Matsui of the Exploratory Research Laboratory gave the last
presentation on microfabrication technology to produce patterning on the high-
Tc materials. Reactive ion beam etching techniques for YBaCuO were described
and the use of various photoresists, taken over from silicon technology. He
showed examples of 0.5_m diameter wires, 1 mm in length. Ion beams were
used for patterning, often with complicated irradiation schedules to get quite
uniform ion beam profiles. They showed examples of selective doping and the
control of local materials modification through ion implantation. Their etching
rate for the high-To materials was close to th,t for silicon.

In general the Japanese industrial companies have strong collaborative pro-
grams within _ company, but almost no interaction with researchers at other
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companies, or national laboratories or universities. The materials work at each
company seemed to be directed toward independent technology development for
that company. However, collaborations with researchers in the U.S., whether
in industry or universities seemed possible, if there was mutual enhancement
of their technologies. Thus the high level of laser beam sputtering technology
offered by Venkatesan of Bellcore made a collaboration with NEC researchers
possible, with NEC supplying the best silicon substrates available anywhere.
Since NEC had little prior experience in con eentional superconductivity, their
activities were strongly directed toward the high-T_ oxide superconductors.

B.3.8 NTT (Ibaraki)

R.C. Dynes

We (R.C. Dynes, W.J. Gallagher, R.W. Ralston) visited the NTT Ibaraki Labo-
ratories on Friday, June 2 on our way to Sendal. There are two NTT electronics
research laboratories, one at Ibaraki and one at Musashino. The Mu"ashino
laboratory is the more basic of the research laboratories and the research at
Ibaraki is aimed at opto-electronics. Our host for the visit was A. Yamaji who
met us at the Katsuta train station at approximately 11:00 am. We were taken
to the Ibaraki laboratory where we were given a brief overview of the NTT
laboratories and then more specifically the NTT Ibaraki laboratory. A rather

extensive (,,_ 1-_hr) lunch followed this introduction where we were treated
to a magnificent view along _he coastline. The afternoon was then spent in
technical presentations and laboratory visits.

It was clear from these presentations that NTT has a strong tradition and
commitment to quality materials. The basic studies were very heavily depen-
dent on synthesis of materials both in thin film form and single crystal. The
investment of resources for both fabrication and charact .ization was clear and

growing. We were shown a thin film synthesis laboratory which had at least
8 sputtering chambers and an MBE apparatus. We were told that a new

:i
MBE apparatus was on order and a substantial amount of clean-room space
for sample processing was being built. The characterization laboratory had an
impressive array of equipment, all ready for use. The interesting aspect of this
was that there was apparently much more equipment than people around the
equipment, unlike the laboratories in the U.S. where people are now likely to

be "lined up" waiting to use equipment, i
The technical presentations were quite impressive. M. Suzuki showed us _i

his work on studying the systematics of the optical properties of thin films of i
La2__Sr_CuO4 as a fimction of z. Tajima show,-d us his pressure dependence _i

of T_ on BiSrCaCuO, LaSrCuO4 and YBCO. By far the most impressive sight :!
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was the single crystals grown by thdaka. This person has put NTT on the

research map on the basis of his single crystals and he is clearly very talented.

While there, he showed us a single crystal of Nd2_xCexCuO4_y which was _ 5
can across! This particular crystal was in the insulating state and it was stated

that as tile materials became metallic, the crystal size decreased. Nevertheless,

these crystals are the most impressive we have seen anywhere.
In summary, we were impressed with the commitment to basic research at

NTT. They clearly believe that basic research results in understanding that in

the long term results in applications but they have a very long term view of the

applications process. There was realistic enthusiasm for the future of high-To
superconductivity.

B.3.9 NTT (Musashino)

R.C. Dynes

r_ _Tuesday, June 6, I visited NTT Basic Research Laboratories in Musashino.

My host was Y. Kato, who is tile Assoc;ate Vice President responsible for basic
research at NTT. I have known Dr. Kato for some time through AT&T--NTT
exchanges and the visit was especially cordial. I was met at the Akasaka Tokyu
Hotel by N. Kambe who was very much our translator for the entire visit to
Japan but is also on the scientific staff at the NTT basic research laboratories.

I was first given all overview of NTT basic research by Dr. Kato. In the dis-

cussion that followed, it was clear that a lasting commitment to research exists
at NTT over the entire spectrum, from tl-,e most basic to the ',ery applied. NTT

has in their more applied areas built a superconducting synchrotron for studies
of x-ray lithography. This machine had just been turned on 1.5 months earlier
and was functioning and everyone was still quite proud of that accomplishment.

At my request I was shown a laboratory where some very bright and enthu-

siastic people were studying the interaction of stimuli and brain waves using
a commercial superconducting magnetometer array. This instrumentation was

from a U.S. manufacturer and they had a most impressive installation. They
were in the process of accumulating data mapping visual and audio stimuli
with brain-wave pa_terns.

I then was presented with an all-too brief description of the superconduct-
ing research at the laboratories. As in almost all of the visits, this work heavily

relied on high quality materials. Although I didn't have much time to dis-

cuss this work (synthesis, transport, optical properties in thin films), it is my
impression that it is of the highest quality.

I had hmch with Drs. Kato and Kambe and we had a most interesting con-

versation about the c_llal_orations (or lack of collaborations) with universities.
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Because Dr. Kato and I know each other, we discussed rather openly the differ-
ences between my institution (AT&T Bell Laboratories) and his (NTT). Much
of my opinion on the interactions between industry and academia was formed
or confirmed in this conversation.

In summary, NTT is a corporation which has had a long history of com-
mitment to basic research and that continues. Their investment in high-T_
superconductivity clearly reflects this opinion, although they (as have most
Japanese researchers whom we visited) have been sobered somewhat from the
early euphoric days. Nevertheless, they believe that high-T_ superconductiv-
ity will significantly impact future technology and are committing resources to
that end.

B.3.10 Sumitomo Electric

M.S. Dresselhaus

As we disembarked from the Shinkansen, we were immediately received at the
track (car 8) by Mr. Miyazaki, who is a researcher at Sumitomo Electric, and an
assistant to Dr. Tsueno Nakahara, director of research at Sumitomo Electric.
Dr. Nakahara is very well known in the United States, and was known to many
members of the JTEC team. Sumitomo Electric had a company bus waiting
for us at the train station and we were directly taken from the train station
to the research laboratory, arriving at the appointed time of 1:30 pro. Because
Dr. Nakahara was in the United States, we were received by Mr. Hajime Hitot-
suyanagi, Deputy General Manager of the Osaka Research Laboratories. Mr.
Maumi Kawashima, Deputy Senior Manager of the R&D Group, Dr. Koji Tada,
General Manager of the Basic High Technology Laboratories R&D Group, and
Mr. Ken Sato, Chief Research Associate of the Osaka Research Laboratory.

Mr. Hitotsuyanagi and Mr. Kawashima provided the opening remarks, greet-
ings and introductions. We were then taken to a nearby location where we saw
an excellent movie on Sumitomo Electric that gave us insight into the overall
operations of Sumitomo. This was followed by a very brief tour of their show-
room. This part of our visit was kept to a minimum because they knew that
we wanted to have a technical information exchange and a tour of their actual
R&D facility which they did provide for us vecy openly.

The first technical presentation was by Mr. Ken Sato and was on conven-
tional superconducting materials, starting with Nb/Ti and A1s_abilized Nb/Ti.
He reviewed many of their achievements in advanced superconducting wire ma-
terials and magnet design through illustrations of a number of magnet systems
they had built. They were building high field magnets with very large bores for
the growth of state-of-the-art GaAs single crystal boules to damp eddy currents
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and convection flow, MRI magnets where they were competing with Fumkawa,
Hitachi, and Toshiba, pulsed magnets with very high ramp rates (6 tesla/sec)
for use in fusion applications at the Japan Atomic Energy Re,arch Institute "'

(JAERI), research magnets for stator applications carried out in collaboration
with ETL where researchers at Sumitomo Electric believe that they can reach

the 50 kW/m 3 goal of MITI for this application. Sumitomo Electric was work-
ing closely with ETL in developing a high field magnet for ETL with 20 double
pancakes for energy storage applications. Sumitomo Electric was also devel-
oping magnets for electrical propulsion of strips using an MHD method. They
were also developing a synchrotron orbital radiation system in collaboration
with ETL for lithography applications. Sumitomo is perhaps only working on
the wire development part of the superconducting magnet. Sumitomo Electric
is one of the world leaders in superconducting materials, and they are putting

much effort into staying on top. They do this by their involvement in R&D ac-

tivities which enhance their long-term state of the art, and the R&D is paid for
mainly by the large national laboratory projects. They have about 15 people
working on their conventional superconductivity program.

Tile next talk was by Mr. Kenjiro Higaki, a researcher in R&D who de-
scribed the Sumitomo Electric thin film high-To program. Higaki's gIoup were

working on all high-To systems of interest: the "123", Bi, and T1 compounds
and they were systematically investigating the relation between the supercon-

ducting properties and the substrate temperatures, annealing temperatures and

many other parameters in order to optimize Jc. The best results were obtained

for Iil/_ because of the absence of a Lorentz force in ohis case, though there

was some controversy regarding the detailed results at the various laboratories.
The Sumitomo researchers were achieving among the best results in the world

on Jc values at 77K and in the presence of a magnetic field. The rewards from

the pursuit of systematic optimization of parameters were now beginning to be

reaped. The Sumitomo Electric program also benefited from state of the art
equipment and good collaboration between various divisions.

The next presentation was again by Mr. Ken Sato who descr;bed their

high-T_ wire processing research program. This was truly impressive state of
the art material science work. Working with a silver tube processing method,

!: these researchers were achieving Jc ,,, 1.7 x 104 A/cm 2, better than NRIM

results by an order of magnitude. They also announced to us their goal of

achieving 105A/cm 2 by the end of the calendar year. Mr. Sato then showed us

beautiful HRTEM lattice fringes showing small particle precipitates at the grain
boundaries, and excellent contrast of the lattice fringes for the superconducting

f domains and for the non-superconducting domains. With the YBaCuO system

they were starting to prepare small test magnets (64 Gauss), which would then

be scaled up periodically to advance on the learning curve. This was a most
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impressive performance.
The next speaker was Dr. Koji Tada, general manager of the basic high

technology R&D group. His research thrust was along three directions, the
first being the modifications of presently known high-T_ materials to enhance
their performance. Dr. Tada showed us a number of examples of systematic
studies synthesis studies leading to the preparation of 6 CuOz layers per unit
cell, and systematic doping studies. Their systematic studies of the phase
diagram of these compounds represented a very large amount of work, but the
rewards were significant in learning how to prepare those single phase materials
with the most desirable superconducting properties. The third research area
was in organic superconductors where we got a lot of the same lecture we had
heard before, startint, at the ISSP. The researchers at Sumitomo Electric were
obtaining T_ =11.1K value for their best BEDT-TTF materials, which is about

the highest T_ obtained thus far with an organic superconductor. Dr. Tada
told us that he had 1.5 people engaged in re._eareh on organic superconductors
and 3.5 people working on other basic high-T_ materials studies, with about 3
more people collaborating on properties measurements. Of these 8 people, 3
had doctors degrees. All members of the JTEC team were highly impressed by
Dr. Tada's overall presentation.

Following these Sumitomo Electric presentations, Dr. Paul "iorn of IBM
made a presentation from the American side, telling about the high-Tc super-
conductivity program at IBM, and showing some comparative tables of thin
film growth in the U.S. and worldwide. We then presented them with a book
on superconductivity research funding in the U.S., which interected them.

After a rather intense discussion which they enjoyed very much, as we did
also, we had a laboratory tour where they were making thin films, and we also
saw their x-ray characterization laboratory. These clean laboratories were kept
very neat and clean, the equipment was very fancy and they had a lot of state
of the art equipment, sputtering systems, ion beam deposition systems, mostly
Japanese-made.

On the tour, we also passed through some manufacturing divisions where
we saw traffic light, systems being manufactured. Apparently the R&D groups,
engineering groups and prototype development groups were not separated spa-
tially.

Following the technical meeting we were driven for about one hour to the
Itami Dai-iehi Hotel wh_re we had a truly magnificent dinner. From the re-
search laboratory came Dr. Tada, Mr. Kawashima and Mr. Hitotsuyanagi, and
we were joined at the hotel by Dr. Akio Hara, Director of Sumitomo Electric
Industries at Itami and Mr. Shoji Yazu, Deputy General Manager of the Itami
Research Laboratory. In addition to the research laboratory in Osaka, there
are research laboratories at Itami, Yohokama and Ibaraki. The discussion at
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dixmer was quite philosophical and was most interesting for all.
We summarize here a few high points of this conversation. Sumitomo Elec-

tric is determined to be the best in everything they do. This company philoso-
phy has a major impact on creating the proper environment for their aggressive
and excellent R&D program. The Sumitomo management is out to hire the
best technical people available from universities. The Sumitomo Electric man-

agers feel that, in general industry gets very good people and can compete very
favorably with the university and government sectors for talent because a job in

a top company commands high prestige. In hiring people, Sumitomo Electric
looks for cleaver people, not necessarily specialists in areas of interest to the

company. For example, Dr. Tada, who manages the Sumitomo Basic Research

Program, is a graduate of Kyoto University in Nuclear Physics, and a very im-
pressive gentleman. The Sumitomo managers have some respecL for university
researchers. They feel that the universities attract some bright people and the
best universities have high quality faculty. However, poor resources, and poor
facilities at universities hamper their efforts. The Sumitomo Ele,._ric managers
also feel that the universities are getting better, and the company is therefore
using more university faculty members as consultants than in the past.

The Sumitomo Electric managers are quite mindful of the importance of
large scale, government supported projects in keeping the Japanese supercon-
ductivity industry alive and healthy. On the one hand, the company managers
speak of their independence, and how effective they are without help from any-
one. This attitude seems very common in Japanese industry. Nevertheless, to
an outsider the technical benefits that Sumitomo Electric and other supercon-
ductivity companies have received from national laboratories such as NRIM

and ETL are very significant. Long-term contracts received from ETL and

JAERI have been very important for sustained superconductivity R&D efforts
at Sumitomo.

The Sumitomo Electric goals for u_e of superconducting materials are to

have J_ values 3 orders of magnitude higher than Cu. In this race, they expect to
be able to achieve J_ ~ 10s A/cm 2 in their high T, tapes by the end of 1989. The

Sumitomo management is very proud of their achievements in superconducting

materials R&D to date, including their work on single crystals, thin films, wires

and tapes. They were also proud of their work on organic superconductors,

especially the large single crystals they have made.

The company managers feel that they have a very good opportunity to
do R&D, including very long range R&D. The Japanese shareholders are very

patient and do not emphasize short term financial results. The shareholders

believe that their companies will go on forever, and perhaps for this reason

shareholders are willing to invest with a very long term horizon. In Japanese

industry, tl,e employees are the heart and soul of the company, and arz the
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major concern of management, not the shareholders.
In discussing forc,gn workers in Japanese industry, the Sumitomo Electric

managers expressed an interest in having a few visiting foreign scientists in their
research laboratories to enhance their creativity. We heard similar interests
in almost all the laboratories we visited. The managers, however, were not
interested in foreign workers in their Japanese plants. They were concerned
that foreign workers have a different culture and that the Japanese islands
were already too crowded with Japanese people.

B.3.11 Toshiba

M.S. Dresselhaus

We (John Hulm, Brian Maple, Paul Horn, Rod Quinn and Mildred Dresselhaus)
, rrived at the Toshiba Central Research Laboratory about half an hour late
because of the rain and the slow traffic. Therefore Dr. Kiyoshi Nagai, senior
Vice President and Director of the R&D Center, who was planning to greet us
and give us an overview of the laboratory, could not wait any longer. Thus we
were instead received by our host Dr. Hiroyasu Ogiwara, a "Fellow Scientist"
of the Toshiba R&D Center who would be classified as a Toshiba Fellow in the
U.S. industrial research laboratory system. After the usual introductions and
exchange of business cards, we were shown a film of the Toshiba businesses and
their R&D focus. Since Toshiba is a very versatile, high tech company, their
R&D activities are diverse, including microelectronics, telecommunications and
information processing, optoelectronic devices, high definition TV, magnetic
resonance imaging system, mechatronics, large scale energy systems, and new
materials.

Following the movie, Dr. Ogiwara made a presentation on the superconduc-
tivity research at Toshiba. Basic superconductivity studies were carried out in
two laboratories: the advanced research laboratory, which was a new laboratory
devoted to high-To superconductivity and biotechnology research, and the en-
ergy sciences and technology laboratory where most of the low-To studies were
done, with a little high-T_ work also being done there. The applications work
was carried out in several other laboratories, with projects connected with the
magnetic resonance imaging systems being carried out in the Medical Engineer-
ing Laboratory of the Medical Systems division. Of the 500 MRI systems that
have been sold in Japan, 30% of these were produced by Toshiba, with each
MRI system containing a superconducting magnet. Superconducting magnet
development was carried out in the Heavy Apparatus Engineering Laboratory
and materials for superconducting wire and other applications were under study
in the New Materials Engineering Laboratory, while other uses for supercon-
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ducting magnets such as for reducing convection in the growth of high quality
GaAs boules were pursued in the Electron Device Engineering Laboratory.

Recently the Toshiba Corporation has considered the commercialization of
products based on superconducting technology in great detail, by convening a
corporate R&D Strategy group reporting to the Executive Board of the Toshiba
Corporation, and chaired by one of the Senior Executive Vice Presidents. This
corporate R&D strategy group consisted of three working subgroups. These
subgroups started meeting in early 1987 after the advent of high-T_ supercon-
ductivity, and met intensively for a year, after which time it was decided that
high-T, superconductivity was not important for the business at present, and
should be pursued only at the research level. To orchestrate this basic research
program, a new research laboratory was established. There are about 50 peo-

i pie now working at Toshiba on superconductivity; 20 on high-T_ and 30 on
conventional superconductivity.

Following the overview presentation on superconductivity research by Dr.
Ogiwara, the next presentation was given by Dr. Osamu Horigami, Senior Man-
ager of the Energy Science and Technology Laboratory. He reported on the ac-
tivities of about 25 people working on Cryogenic Engineering, Superconducting
Magnet Systems and Superconducting Materials Development. This group has
been involved with such projects as developing superconducting magnets for

! magnetic resonance imaging, magnetic levitation for trains, magnetohydrody-
namic generators for ship propulsion using seawater and magnets for single

! crystal growth of semiconducting crystals. Advanced design work for super-
conductivity products is done by Dr. Horigami's group. This group was also
involved with research aimed at producing higher magnetic fields in supercon-
ducting magnets through improved materials and design, using such techniques
as adding Ti to Nb3Sn using a tube metho,_t and by bringing the filament di-
ameters of the superconducting wire down to smaller and smaller dimensions. 1
Toshiba researchers now have reliable processes for producing superconduct..

i ing filaments at the 0.44#m level, and were now developing the technology
'! for filaments at the 700/_, level. They showed us some impressive results for

Ti doped NbaSn materials achieving current densities of 400A/mm 2 at 23T.
By using a Nb tube rather than a bronze method they had previously used,
they were able to eliminate an annealing step, thereby reducing costs and im-
proving performance. The superconducting magnct work of this group is truly
world class. The continuity of support and the challenging engineering projects
have provided a superior working environment and motivation for this Toshiba
grtp.

We next heard a presentation by Dr. T. Miura of the Advanced Research
" Laboratory, who spoke to us on several research topics: the search tor new
I high-T_ superconducting materials, improving existing high-T_ materials, and
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thin film growth. This group is also involved with the properties measurements

and the technologies of preparing junctions and in patterning these junctions.

For high speed electronic devices and for telecommunications, low tempera-
ture processing, smooth surfaces and high surface stability is needed. The film

quality and surfaces of the YBaaCuaOr on MgO and SrTiO3 substrates they
showed us looked good. They also showed us some tunnel junction and pat-

terning results. They were working on both the YBaCuO and Bi systems with

a variety of techniques (3 target sputtering, MOCVD, MBE). In fact, the major

emphasis of the thin film program seemed to be systematic studies of different

approaches to thin film growth to see which method had the best characteristics

for specific applications.

Following Dr. Miura's presentation, Dr. H. Yoshino reported on other high-

Tc superconductivity research including superconducting properties and struc-
tural modulation of the Bi2Sr_CaCu2Os system and the growth of large single

crystals of these Bi compounds. This group was studying the effect of the
substitution of Ca by Y and the origin of the structural modulation effect in

the Bi compounds. The large single crystal was grown by the self flux method
and Dr. Yoshino told us that the secret of success in the crystal growth was

the slow cooling of l°C/hr. The samples were removed from their containment
with a laser. Dr. Ando claimed that the growth of good single crystals did not

require fancy apparatus, but rather a high degree of attention and care.

This group has done some very gcod work with regard to the substitution

of Ca 2+ by y3+. In this system, since the radius of the two ions is almost the

same, it was assumed that the crystal structure remains the same as holes are
added. One achievement they were proud of was the first report of a super-

conductor to semiconductor transition in the Bi2Sr2Cal-_YxCu20s+s system

as x is increased, this transition occurring without passage through a metallic

non-superconducting phase, Similar systematic work on this subject was also

seen at Tohoku University where Lu rather than Y was used. With this sys-

tem they carried out careful phase diagram studies and were the first to clarify
the relation between the Cu concentration and Tc upon Y doping. Dr. Yoshino

showed some very nice high resolution TEM pictures for their modulation struc-

tures, and results were also shown relating superconducting properties to the

changes in lattice parameter and Pb doping. They showed that for samples

with high-To, the Meissner effects were sharp. They then gave us a collection

of interesting publications.

Following these presentations we had some discussion. During these dis-

cussions, they showed us early results on wires and tapes, which they explored
soon after the advent of high-T_ superconductivity. But they have not pursued

this further because of their strong belief that this is the time for basic reccarch

on high--To materials. The Toshiba people feel that major electronics applica-
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tions are far away. They watch the work at Nippon Steel on increasing the Jc

for wires and tapes using the quench-melt method, but they feel that all the

laboratories in Japan are still a long way from making a commercial wire. Dr.

Ogiwara himself feels that there are two kinds of companies: newcomers to su-

perconductivity, who are very excited about the new high-To materials and are

not sensitive to the realities of making reliable superconducting devices based

on superconducting wires, and companies with a lot of experience with su-

perconducting machinery, and these latter companies are more cautious about

their superconducting R&D progra,ns. The Toshiba people explicitly men-
tioned Professor Tanaka as an enthusiast who may not be too realistic about

the commercial side of superconductivity. In the meantime, Toshiba is deeply

committed to superconductivity R&D, with half of the funding coming from

corporate funds, and half from the manufacturing divisions, thereby reinforcing

technology transfer. Toshiba has surprisingly little interaction with NRIM, but

will interact and compete with other applied superconductivity R&D programs

like with Hitachi on the table top synchrotron orbital radiation machine. In

this case, Hitachi is designing a machine based on a superconducting magnet

while Toshiba's machine is based on a conventional non-superconducting mag-

net. We also heard about some cooperation between Toshiba and Sumitomo

Electric on designing a small refrigerator for liquid helium production, for use

on a Maglev system based on conventional superconductors. Professor Tanaka
is however of the opinion that Maglev equipment will have to be operated at

77K to be cost effective, so he is looking for high-To superconducting magnets

and energy storage systems for Maglev applications.
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